×

Anisotropically weighted \(L^q-L^r\) estimates of the Oseen semigroup in exterior domains, with applications to the Navier-Stokes flow past a rigid body. (English) Zbl 1531.35230

Summary: We consider the spatial-temporal behavior of the Navier-Stokes flow past a rigid body in \(\mathbb{R}^3\). This paper develops analysis in Lebesgue spaces with anisotropic weights \({(1+|x|)}^\alpha {(1+|x|-x_1)}^\beta\), which naturally arise in the asymptotic structure of fluid when the translational velocity of the body is parallel to the \(x_1\)-direction. We derive anisotropically weighted \(L^q-L^r\) estimates for the Oseen semigroup in exterior domains. As applications of those estimates, we study the stability/attainability of the Navier-Stokes flow in anisotropically weighted \(L^q\) spaces to get the spatial-temporal behavior of nonstationary solutions.
© 2023 Wiley-VCH GmbH.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] J.Bergh and J.Löfström, Interpolation spaces, Springer, Berlin, 1976. · Zbl 0344.46071
[2] K. I.Babenko, On stationary solutions of the problem of flow past a body of viscous incompressible fluid, Math. Sb.91(1973), 3-27; English Translation: Math. USSR Sbornik 20 (1973), 1-25. · Zbl 0285.76009
[3] H.‐O.Bae and J.Roh, Stability for the 3D Navier‐Stokes equations with nonzero far field velocity on exterior domains, J. Math. Fluid Mech.14 (2012), 117-139. · Zbl 1294.35055
[4] M. E.Bogovskiĭ, Solution of the first boundary value problem for the equation of continuity of an incompressible medium, Sov. Math. Dokl.20 (1979), 1094-1098. · Zbl 0499.35022
[5] W.Borchers and T.Miyakawa, L^2‐decay for Navier‐Stokes flows in unbounded domains, with application to exterior stationary flows, Arch. Ration. Mech. Anal.118 (1992), 273-295. · Zbl 0756.76018
[6] W.Borchers and H.Sohr, On the equations rot,v=g and div,u=f with zero boundary conditons, Hokkaido Math. J.19 (1990), 67-87. · Zbl 0719.35014
[7] H.Brezis, Remarks on the preceding paper by M. Ben‐Artzi, “Global solutions of two dimensional Navier‐Stokes and Euler equations,”Arch. Ration. Mech. Anal.128 (1994), 359-360. · Zbl 0837.35112
[8] I.‐D.Chang and R.Finn, On the solutions of a class of equations occurring in continuum mechanics, with application to the Stokes paradox, Arch. Ration. Mech. Anal.7 (1961), 388-401. · Zbl 0104.42401
[9] P.Deuring, Spatial decay of time‐dependent Oseen flows, SIAM J. Math. Anal.41 (2009), 886-922. · Zbl 1189.35222
[10] P.Deuring, Pointwise spatial decay of time‐dependent Oseen flows: the case of data with noncompact support, Discrete Contin. Dyn. Syst. Ser. A33 (2013), 2757-2776. · Zbl 1295.35359
[11] P.Deuring, Spatial decay of time‐dependent incompressible Navier‐Stokes flows with nonzero velocity at infinity, SIAM J. Math. Anal.45 (2013), 1388-1421. · Zbl 1294.35059
[12] P.Deuring, A representation formula for the velocity part of 3D time‐dependent Oseen flows, J. Math. Fluid Mech.16 (2014), 1-39. · Zbl 1307.35190
[13] P.Deuring, The 3D time‐dependent Oseen system: link between \(L^p\)‐integrability in time and pointwise decay in space of the velocity, J. Math. Fluid Mech.23 (2021), Paper No. 46. · Zbl 1471.76025
[14] P.Deuring, \(L^q\)‐weak solutions to the time‐dependent Oseen system: decay estimates, Math. Nachr.296 (2023), 164-195. · Zbl 1526.76014
[15] P.Deuring, Time‐dependent incompressible viscous flows around a rigid body: estimates of spatial decay independent of boundary conditions, J. Differ. Equ.335 (2022), 497-548. · Zbl 1498.35384
[16] Y.Enomoto and Y.Shibata, Local energy decay of solutions to the Oseen equation in the exterior domains, Indiana Univ. Math. J.53 (2004), 1291-1330. · Zbl 1088.35048
[17] Y.Enomoto and Y.Shibata, On the rate of decay of the Oseen semigroup in the exterior domains and its application to Navier‐Stokes equation, J. Math. Fluid Mech.7 (2005), 339-367. · Zbl 1094.35097
[18] R.Farwig, The stationary exterior 3D‐problem of Oseen and Navier‐Stokes equations in anisotropically weighted Sobolev spaces, Math. Z.211 (1992), 409-447. · Zbl 0727.35106
[19] R.Farwig and H.Sohr, Weighted \(L^q\)‐theory for the Stokes resolvent in exterior domains, J. Math. Soc. Jpn.49 (1997), 251-288. · Zbl 0918.35106
[20] R.Farwig and H.Sohr, Weighted estimates for the Oseen equations and the Navier‐Stokes equations in exterior domains, in: Heywood, J.G. (ed.) et al. (eds.) Theory of the Navier‐Stokes Equations, Series on Advances in Mathematics for Applied Sciences, vol. 47, World Scientific Publishing, River Edge, 1998, pp. 11-30. · Zbl 0934.35120
[21] R.Finn, Estimate at infinity for stationary solutions of the Navier‐Stokes equations, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumanie (N.S.)3 (1959), 387-418. · Zbl 0106.39402
[22] R.Finn, An energy theorem for viscous fluid motions, Arch. Ration. Mech. Anal.6 (1960), 371-381. · Zbl 0096.41303
[23] R.Finn, On the exterior stationary problem for the Navier‐Stokes equations, and associated perturbation problems, Arch. Ration. Mech. Anal.19 (1965), 363-406. · Zbl 0149.44606
[24] R.Finn, Stationary solutions of the Navier‐Stokes equations, In: FinnR. (ed.) (ed.) Proceedings of Symposia in Applied Mathematics, American Mathematical Society, vol. 17, 1965, pp. 121-153. · Zbl 0148.21602
[25] R.Finn, Mathematical questions relating to viscous fluid flow in an exterior domain, Rocky Mountain J. Math.3 (1973), 107-140. · Zbl 0261.35068
[26] H.Fujita and T.Kato, On the Navier‐Stokes initial value problem. I, Arch. Ration. Mech. Anal.16 (1964), 269-315. · Zbl 0126.42301
[27] D.Fujiwara and H.Morimoto, An \(L_r\)‐theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math24 (1977), 685-700. · Zbl 0386.35038
[28] G. P.Galdi, On the Oseen boundary value problem in exterior domains, In: Heywood, J.G. (ed.) et al. (eds.) The Navier‐Stokes Equations II— Theory and Numerical Methods (Oberwolfach, 1991), vol. 1530 of Lecture Notes in Math., Springer, Berlin, 1992, pp. 111-131. · Zbl 0783.35047
[29] G. P.Galdi, On the Asymptotic Structure of D‐Solutions to Steady Navier‐Stokes Equations in Exterior Domains, In: Galdi, G. P. (ed.) (ed.) Mathematical Problems Related to the Navier‐Stokes Equation, Series on Advances in Mathematics for Applied Sciences, vol. 11, World Scientific Publishing, River Edge, 1992, pp. 81-104. · Zbl 0794.35111
[30] G. P.Galdi, An introduction to the mathematical theory of the Navier‐Stokes equations. steady‐state problems, 2nd ed.Springer, New York, 2011. · Zbl 1245.35002
[31] G. P.Galdi, J. G.Heywood, and Y.Shibata, On the global existence and convergence to steady state of Navier‐Stokes flow past an obstacle that is started from rest, Arch. Ration. Mech. Anal.138 (1997), 307-318. · Zbl 0898.35071
[32] J.García‐Cuerva and J. L.Rubio de Francia, Weighted norm inequalities and related topics, North‐Holland, Amsterdam, 1985. · Zbl 0578.46046
[33] J. G.Heywood, On stationary solutions of the Navier‐Stokes equations as limits of nonstationary solutions, Arch. Ration. Mech. Anal.37 (1970), 48-60. · Zbl 0194.41402
[34] J. G.Heywood, The exterior nonstationary problem for the Navier‐Stokes equations, Acta Math.129 (1972), 11-34. · Zbl 0237.35074
[35] J. G.Heywood, The Navier‐Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J.29 (1980), 639-681. · Zbl 0494.35077
[36] T.Hishida, On the relation between the large time behavior of the Stokes semigroup and the decay of steady Stokes flow at infinity. In: Escher, J. (ed.) et al. (eds.) Parabolic problems: the Herbert Amann Festschrift, Progress in Nonlinear Differential Equations and Their Applications, vol. 80, Springer, Basel, 2011, pp. 343-355. · Zbl 1247.35092
[37] T.Hishida, An alternative proof of \(L^q\)‐\(L^r\) estimates of the Oseen semigroup in higher dimensional exterior domains, Partial Differ. Equ. Appl.2 (2021), Paper No. 32. · Zbl 1491.76022
[38] H.Iwashita, \(L_q\)‐\(L_r\) estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier‐Stokes initial value problems in \(L_q\) spaces, Math. Ann.285 (1989), 265-288. · Zbl 0659.35081
[39] T.Kato, Strong \(L^p\) solutions of the Navier‐Stokes equation in \(\mathbb{R}^m\), with applications to weak solutions, Math. Z.187 (1984), 471-480. · Zbl 0545.35073
[40] G. H.Knightly, Some decay properties of solutions of the Navier‐Stokes equations, In: Rautmann, R. (ed.) (ed.): Approximation methods for Navier‐Stokes problems. Lecture Notes in Mathematics, vol. 771, Springer, Berlin, 1979, pp. 287-298. · Zbl 0458.35082
[41] T.Kobayashi and T.Kubo, Weighted \(L^p\)‐theory for the Stokes resolvent in some unbounded domains, Tsukuba J. Math.37 (2013), 179-205. · Zbl 1282.35103
[42] T.Kobayashi and T.Kubo, Weighted estimate of Stokes semigroup in unbounded domains, In: Ei, S.‐I. (ed.) et al. (eds.) Nonlinear Dynamics in Partial Differential Equations, Adv. Stud. Pure Math., Math. Soc., vol. 64, Japan, Tokyo, 2015, pp. 427-435. · Zbl 1335.35183
[43] T.Kobayashi and Y.Shibata, On the Oseen equation in the three dimensional exterior domains, Math. Ann.310 (1998), 1-45. · Zbl 0891.35114
[44] S.Kračmar, A.Novotný, and M.Pokorný, Estimates of Oseen kernels in weighted \(L^p\) spaces, J. Math. Soc. Jpn.53 (2001), 59-111. · Zbl 0988.76021
[45] J.Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl.12 (1933), 1-82. · Zbl 0006.16702
[46] P.Maremonti and V. A.Solonnikov, On nonstationary Stokes problem in exterior domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci.24 (1997), 395-449. · Zbl 0958.35103
[47] K.Masuda, On the stability of incompressible viscous fluid motions past objects, J. Math. Soc. Jpn.27 (1975), 294-327. · Zbl 0303.76011
[48] T.Miyakawa, On nonstationary solutions of the Navier‐Stokes equations in an exterior domain, Hiroshima Math. J.12 (1982), 115-140. · Zbl 0486.35067
[49] T.Miyakawa and H.Sohr, On energy inequality, smoothness and large time behavior in L^2 for weak solutions of the Navier‐Stokes equations in exterior domains, Math. Z.199 (1988), 455-478. · Zbl 0642.35067
[50] R.Mizumachi, On the asymptotic behaviour of incompressible viscous fluid motions past bodies, J. Math. Soc. Jpn.36 (1984), 497-522. · Zbl 0578.76026
[51] R.O’Neil, Convolution operators and \(L(p,q)\) spaces, Duke Math. J.30 (1963), 129-142. · Zbl 0178.47701
[52] Y.Shibata, On an exterior initial boundary value problem for Navier‐Stokes equations, Quart. Appl. Math.LVII (1999), 117-155. · Zbl 1157.35451
[53] C. G.Simader and H.Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in \(L^q\)‐spaces for bounded and exterior domains, In: Galdi, G.P. (ed.) (ed.) Mathematical Problems Relating to the Navier‐Stokes Equations, Series on Advances in Mathematics for Applied Sciences, vol. 11, World Scientific Publishing, River Edge, 1992, pp. 1-35. · Zbl 0791.35096
[54] E. M.Stein, Harmonic analysis: real‐variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993. · Zbl 0821.42001
[55] T.Takahashi, Existence of a stationary Navier‐Stokes flow past a rigid body, with application to starting problem in higher dimensions, J. Math. Fluid Mech.23 (2021), Paper No. 32. · Zbl 1460.35265
[56] A.Torchinsky, Real‐variable methods in harmonic analysis, Academic Press, Orlando, 1986. · Zbl 0621.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.