×

Two-dimensional reductions of the Whitham modulation system for the Kadomtsev-Petviashvili equation. (English) Zbl 1531.35133

Summary: Two-dimensional reductions of the Kadomtsev-Petviashvili(KP)-Whitham system, namely the overdetermined Whitham modulation system for five dependent variables that describe the periodic solutions of the KP equation, are studied and characterized. Three different reductions are considered corresponding to modulations that are independent of \(x\), independent of \(y\), and of \(t\) (i.e. stationary), respectively. Each of these reductions still describes dynamic, two-dimensional spatial configurations since the modulated cnoidal wave, generically, has a nonzero speed and a nonzero slope in the \(xy\) plane. In all three of these reductions, the integrability of the resulting systems of equations is proven, and various other properties are elucidated. Compatibility with conservation of waves yields a reduction in the number of dependent variables to two, three and four, respectively. As a byproduct of the stationary case, the Whitham modulation system for the classical Boussinesq equation is explicitly obtained.
{© 2024 IOP Publishing Ltd & London Mathematical Society}

MSC:

35F50 Systems of nonlinear first-order PDEs
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests

Software:

DLMF

References:

[1] Abenda, S.; Grinevich, P. G., Rational degenerations of M-curves, totally positive Grassmannians and KP2-solitons, Commun. Math. Phys., 361, 1029-81 (2018) · Zbl 1400.14094 · doi:10.1007/s00220-018-3123-y
[2] Abenda, S.; Grinevich, P. G., Real soliton lattices of the Kadomtsev-Petviashvili II equation and desingularization of spectral curves: the Gr \(####(2,4)\) case, Proc. Steklov Inst. Math., 302, 7-22 (2018) · Zbl 1437.37086 · doi:10.1134/S0081543818060019
[3] Ablowitz, M. J.; Biondini, G.; Rumanov, I., Whitham modulation theory for (2+1)-dimensional equations of Kadomtsev-Petviashvili type, J. Phys. A, 51 (2018) · Zbl 1397.37069 · doi:10.1088/1751-8121/aabbb3
[4] Ablowitz, M. J.; Biondini, G.; Wang, Q., Whitham modulation theory for the Kadomtsev-Petviashvili equation, Proc. R. Soc. A, 473 (2017) · Zbl 1404.35382 · doi:10.1098/rspa.2016.0695
[5] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press · Zbl 0762.35001
[6] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform (1981), SIAM · Zbl 0472.35002
[7] Baronio, F.; Wabnitz, S.; Kodama, Y., Optical Kerr spatiotemporal dark-lump dynamics of hydrodynamic origin, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.173901
[8] Belokolos, E. D.; Bobenko, A. I.; Enol’skii, V. Z.; Its, A. R.; Matveev, V. B., Algebro-Geometric Approach to Nonlinear Integrable Equations (1994), Springer · Zbl 0809.35001
[9] Biondini, G., Line soliton interactions of the Kadomtsev-Petviashvili equation, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.064103
[10] Biondini, G.; Chakravarty, S., Soliton solutions of the Kadomtsev-Petviashvili II equation, J. Math. Phys., 47 (2006) · Zbl 1111.35055 · doi:10.1063/1.2181907
[11] Biondini, G.; Hoefer, M. A.; Moro, A., Integrability, exact reductions and special solutions of the KP-Whitham equations, Nonlinearity, 33, 4114-32 (2020) · Zbl 1471.37061 · doi:10.1088/1361-6544/ab8a66
[12] Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B., Towards an inverse scattering theory for non-decaying potentials of the heat equation, Inverse Problems, 17, 937-57 (2001) · Zbl 0988.35140 · doi:10.1088/0266-5611/17/4/324
[13] Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B., Extended resolvent and inverse scattering with an application to KPI, J. Math. Phys., 44, 3309-40 (2003) · Zbl 1062.37088 · doi:10.1063/1.1587874
[14] Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B., Building an extended resolvent of the heat operator via twisting transformations, Theor. Math. Phys., 159, 721-33 (2009) · Zbl 1176.35048 · doi:10.1007/s11232-009-0060-0
[15] Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B., On the equivalence of different approaches for generating multisoliton solutions of the KPII equations, Theor. Math. Phys., 165, 1237-55 (2010) · Zbl 1256.35112 · doi:10.1007/s11232-010-0106-3
[16] Boussinesq, J. V., Thèorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17, 55-108 (1872) · JFM 04.0493.04
[17] Dubrovin, B. A.; Novikov, S. P., Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russ. Math. Surv., 44, 35-124 (1989) · Zbl 0712.58032 · doi:10.1070/RM1989v044n06ABEH002300
[18] El, G. A.; Hoefer, M. A., Dispersive shock waves and modulation theory, Physica D, 333, 11-65 (2016) · Zbl 1415.76001 · doi:10.1016/j.physd.2016.04.006
[19] Ferapontov, E. V.; Khusnutdinova, K. R., The Haantjes tensor and double waves for multi-dimensional systems of hydrodynamic type: a necessary condition for integrability, Proc. Roy. Soc. A, 462, 1197-219 (2006) · Zbl 1149.37322 · doi:10.1098/rspa.2005.1627
[20] Ferapontov, E. V.; Marshall, D. G., Differential-geometric approach to the integrability of hydrodynamic chains: the Haantjes tensor, Math. Ann., 339, 61-99 (2005) · Zbl 1145.37034 · doi:10.1007/s00208-007-0106-2
[21] Hinch, E. J., Perturbation Methods (1991), Cambridge University Press · Zbl 0746.34001
[22] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge University Press · Zbl 1099.35111
[23] Huang, G.; Makarov, V. A.; Velarde, M. G., Two-Dimensional Solitons in Bose-Einstein Condensates with a Disk-Shaped Trap, Phys. Rev. A, 67 (2003) · doi:10.1103/PhysRevA.67.023604
[24] Infeld, E.; Rowlands, G., Nonlinear Waves, Solitons and Chaos (2000), Cambridge University Press · Zbl 0726.76018
[25] Kadomtsev, B. B.; Petviashvili, V. I., On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15, 539-41 (1970) · Zbl 0217.25004
[26] Kodama, Y., Solitons in two-Dimensional Shallow Water (2018), SIAM · Zbl 1440.35001
[27] Konopelchenko, B., Solitons in Multidimensions (1993), World Scientific · Zbl 0836.35002
[28] Lonngren, K. E., Ion acoustic soliton experiments in a plasma, Opt. Quantum Electron., 30, 615-30 (1998) · doi:10.1023/A:1006910004292
[29] Novikov, S. P.; Manakov, S. V.; Pitaevskii, L. P.; Zakharov, V. E., Theory of Solitons. The Inverse Scattering Method (1984), Plenum · Zbl 0598.35002
[30] Olver, F. W.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., Nist Handbook of Mathematical Functions (2010), Cambridge University Press · Zbl 1198.00002
[31] Pelinovsky, D. E.; Stepanyants, Y. A.; Kivshar, Y. S., Self-focusing of plane dark solitons in nonlinear defocusing media, Phys. Rev. E, 51, 5016-26 (1995) · doi:10.1103/PhysRevE.51.5016
[32] Ryskamp, S.; Hoefer, M. A.; Biondini, G., Oblique interactions between solitons and mean flows in the Kadomtsev-Petviashvili equation, Nonlinearity, 34, 3583-617 (2021) · Zbl 1467.35094 · doi:10.1088/1361-6544/abef74
[33] Ryskamp, S.; Hoefer, M. A.; Biondini, G., Modulation theory for soliton resonance and Mach reflection, Proc. Roy. Soc. A, 478 (2022) · doi:10.1098/rspa.2021.0823
[34] Ryskamp, S.; Maiden, M. D.; Biondini, G.; Hoefer, M. A., Evolution of truncated and bent gravity wave solitons: the mach expansion problem, J. Fluid Mech., 909, A24 (2021) · Zbl 1461.76079 · doi:10.1017/jfm.2020.952
[35] Smoller, J., Shock Waves and Reaction Diffusion Equations (1994), Springer · Zbl 0807.35002
[36] Tsarev, S. P., Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type, Sov. Math. Dokl., 31, 488-91 (1995) · Zbl 0605.35075
[37] Tsarev, S. P., The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method, Math. USSR-Izvestiya, 37, 397-419 (1991) · Zbl 0796.76014 · doi:10.1070/IM1991v037n02ABEH002069
[38] Tsuchiya, S.; Dalfovo, F.; Pitaevskii, L., Solitons in two-dimensional Bose-Einstein condensates, Phys. Rev. A, 77 (2008) · doi:10.1103/PhysRevA.77.045601
[39] Turitsyn, S. K.; Fal’kovich, G. E., Stability of magnetoelastic solitons and self-focusing of sound in antiferromagnet, Sov. Phys. JETP, 62, 146-52 (1985)
[40] Whitham, G. B., Non-linear dispersive waves, Proc. R. Soc. A, 283, 238-61 (1965) · Zbl 0125.44202 · doi:10.1098/rspa.1965.0019
[41] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley · Zbl 0373.76001
[42] Wu, D., The direct scattering problem for perturbed Kadomtsev-Petviashvili multi line solitons, J. Math. Phys., 62 (2021) · Zbl 1498.35486 · doi:10.1063/5.0053911
[43] Wu, D., Stability of Kadomtsev-Petviashvili multi-line solitons (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.