×

The \(*\)-product of domains in several complex variables. (English) Zbl 1531.32003

Summary: In this article, we investigate the problem of computing the \(*\)-product of domains in \(\mathbb{C}^N\). Assuming that \(0\in G\subset \mathbb{C}^N\) is an arbitrary Runge domain and \(0\in D\subset \mathbb{C}^N\) is a bounded, smooth and linearly convex domain (or a non-decreasing union of such ones), we establish a geometric relation between \(D*G\) and another domain in \(\mathbb{C}^N\) which is ’extremal’ (in an appropriate sense) with respect to a special coefficient multiplier dependent only on the dimension \(N\). Next, for \(N = 2\), we derive a characterization of the latter domain expressed in terms of planar geometry. These two results, when combined together, give a formula which allows to calculate \(D*G\) for two-dimensional domains \(D\) and \(G\) satisfying the outlined assumptions.

MSC:

32A05 Power series, series of functions of several complex variables
32D15 Continuation of analytic objects in several complex variables

References:

[1] Render, H.Hadamard’s multiplication theorem - recent developments. Coll Math. 1997;74:79-92. · Zbl 0903.46049
[2] Bernal-Gonzalez, L, Calderon-Moreno, MC, Prado-Bassas, JA.Cyclicity of coefficient multipliers: linear structure. Acta Math Hung. 2007;114:287-300. · Zbl 1129.47006
[3] Brück, R, Müller, J.Invertible elements in a convolution algebra of holomorphic functions. Math Ann. 1992;294:421-438. · Zbl 0769.30002
[4] Brück, R, Müller, J.Closed ideals in a convolution algebra of holomorphic functions. Can J Math. 1995;47:915-928. · Zbl 0836.30002
[5] Brück, R, Render, H.Invertibility of holomorphic functions with respect to the Hadamard product. Complex Var. Theory Appl.2000;42:207-223. · Zbl 1021.30004
[6] Grosse-Erdmann, K-G.On the Borel-Okada theorem and the Hadamard multiplication theorem. Complex Var. Theory Appl.1993;22:101-112. · Zbl 0794.30004
[7] Müller, J.The Hadamard multiplication theorem and applications in summability theory. Complex Var. Theory Appl.1992;18:155-166. · Zbl 0756.30002
[8] Müller, J.Coefficient multipliers from \(H(G_1)\) into \(H(G_2) \). Arch Math. 1993;61:75-81. · Zbl 0778.30003
[9] Müller, J, Naik, S, Ponnusany, S.Growth of entire functions of exponential type defined by convolution. Arch Math. 2006;87:330-342. · Zbl 1106.30014
[10] Müller, J, Pohlen, T.The Hadamard product as a universality preserving operator. Comput Methods Funct Theory. 2010;10:281-289. · Zbl 1205.30005
[11] Render, H.Homomorphisms on Hadamard algebras. Rend Circ Mat Palermo Serie II Suppl. 1996;40:153-158. · Zbl 0884.46035
[12] Render, H, Sauer, A.Algebras of holomorphic functions with Hadamard multiplication. Studia Math. 1996;118:77-101. · Zbl 0855.46032
[13] Render, H, Sauer, A.Invariance properties of homeomorphisms on algebras of holomorphic functions with the Hadamard product. Studia Math. 1996;121:53-65. · Zbl 0864.46029
[14] Zając, S.The Hadamard multiplication theorem in several complex variables. Complex Var Elliptic Equ. 2017;62(1):1-26. · Zbl 1366.32001
[15] Domański, P, Langenbruch, M.Representation of multipliers on spaces of real analytic functions. Analysis. 2012;32:137-162. · Zbl 1288.46020
[16] Domański, P, Langenbruch, M.Algebra of multipliers on the space of real analytic functions of one variable. Studia Math. 2012;212:155-171. · Zbl 1268.46021
[17] Domański, P, Langenbruch, M.Hadamard multipliers on spaces of real analytic functions. Adv Math. 2013;240:575-612. · Zbl 1288.46019
[18] Domański, P, Langenbruch, M.Euler type partial differential operators on real analytic functions. J Math Anal Appl. 2016;443(2):652-674. · Zbl 1347.35083
[19] Domański, P, Langenbruch, M.Interpolation of holomorphic functions and surjectivity of Taylor coefficient multipliers. Adv Math. 2016;293:782-855. · Zbl 1336.35115
[20] Domański, P, Langenbruch, M, Vogt, D.Hadamard type operators on spaces of real analytic functions in several variables. J Funct Anal. 2015. doi:. (published on-line).
[21] Müller, J, Pohlen, T.The Hadamard product on open sets in the extended plane. Complex Anal Oper Theory. 2012;6:257-274. · Zbl 1294.30007
[22] Aizenberg, LA, Leinartas, EK.Multidimensional Hadamard composition and Szegö kernels (Russian). Sibirsk Mat Zh. 1983;24(3):3-10. Translation in Sib Math J. 1983;24(3):317-323. · Zbl 0548.32002
[23] Elin, MM.Multidimensional Hadamard composition (Russian). Sibirsk Mat Zh. 1994;35(5):1052-1057. Translation in Sib Math J. 1994;35(5):936-940. · Zbl 0861.32001
[24] Leinartas, EK.Multidimensional Hadamard composition and sums with linear constraints on the summation indices (Russian). Sibirsk Mat Zh. 1989;30(2):102-107. 226; Translation in Sib Math J. 1989;30(2):250-255. · Zbl 0679.32001
[25] Hörmander, L.An introduction to complex analysis in several variables. 3rd ed.Amsterdam: North-Holland Publishing Company; 1990. · Zbl 0685.32001
[26] Schaefer, HH.Topological vector spaces. 2nd ed. New York (NY): Springer; 1999. · Zbl 0983.46002
[27] Bungart, L.Holomorphic functions with values in locally convex spaces and applications to integral formulas. Trans Am Math Soc. 1964;111:317-344. · Zbl 0142.33902
[28] Stout, EL.Polynomial convexity (Progress in Mathematics 261). Basel: Birkhäuser; 2007. ISBN 978-0-8176-4537-3. · Zbl 1124.32007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.