×

Dynamic output feedback control for interval type-2 fuzzy systems against DoS attacks and sensor failures. (English) Zbl 1530.93124

Summary: This article focuses on investigating a dynamic output feedback control issue for uncertain nonlinear networked control systems (NCSs) in the presence of Denial-of-Service (DoS) attacks and sensor failures. By using the low and upper membership functions (LUMFs) of interval type-2 (IT2) Takagi-Sugeno (T-S) fuzzy model, the uncertainties existing in the considered NCSs are depicted effectively. Based on the IT2 fuzzy system, a switching fuzzy model is further established to correspond to different DoS attack scenarios. According to the average dwell-time approach and Lyapunov stability theory, an IT2 fuzzy dynamic output feedback control scheme is proposed so that the exponential stability of the considered NCSs can be achieved regardless of DoS attacks and sensor failures. Lastly, illustrative examples are presented to confirm the theoretical results proposed in this paper.

MSC:

93B52 Feedback control
93C42 Fuzzy control/observation systems
93B70 Networked control
Full Text: DOI

References:

[1] Dong, G. W.; Y, Li. H.; Lu, R. Q., Finite-time consensus tracking neural network FTC of multi-agent systems, IEEE Transactions on Neural Networks and Learning Systems, 32, 2, 653-662 (2021) · doi:10.1109/TNNLS.2020.2978898
[2] Du, P. H.; Pan, Y. N.; Li, H. Y.; Lam, H. K., Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems, IEEE Transactions on Fuzzy Systems (2020) · doi:10.1109/TFUZZ.2020.2992632
[3] Du, Z. B.; Kao, Y. G.; Karimi, H. R.; Zhao, X. D., Interval type-2 fuzzy sampled-data H_∞ control for nonlinear unreliable networked control systems, IEEE Transactions on Fuzzy Systems, 28, 7, 1434-1448 (2019) · doi:10.1109/TFUZZ.2019.2911490
[4] Hu, L.; Wang, Z. D.; Han, Q. L.; Liu, X. H., State estimation under false data injection attacks: Security analysis and system protection, Automatica, 87, 176-183 (2018) · Zbl 1378.93119 · doi:10.1016/j.automatica.2017.09.028
[5] Huang, Y. B.; He, Y.; An, J. Q.; Wu, M., Polynomial-type Lyapunov-Krasovskii functional and Jacobi-Bessel inequality: Further results on stability analysis of time-delay systems, IEEE Transactions on Automatic Control (2020) · Zbl 1467.93243 · doi:10.1109/TAC.2020.3013930
[6] Jiang, B.; Mao, Z. H.; Shi, P., H_∞ filter design for a class of networked control systems via T-S fuzzy-model approach, IEEE Transactions on Fuzzy Systems, 18, 1, 201-208 (2009) · doi:10.1109/TFUZZ.2009.2037009
[7] Kavikumar, R.; Sakthivel, R.; Kwon, O. M.; Kaviarasan, B., Finite-time boundedness of interval type-2 fuzzy systems with time delay and actuator faults, Journal of the Franklin Institute, 356, 15, 8296-8324 (2019) · Zbl 1423.93196 · doi:10.1016/j.jfranklin.2019.07.031
[8] Lam, H. K.; Li, H. Y.; Deters, C.; Secco, E. L.; Wurdemann, H. A.; Althoefer, K., Control design for interval type-2 fuzzy systems under imperfect premise matching, IEEE Transactions on Industrial Electronics, 61, 2, 956-968 (2013) · doi:10.1109/TIE.2013.2253064
[9] Lam, H. K.; Seneviratne, L. D., Stability analysis of interval type-2 fuzzy-model-based control systems, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38, 3, 617-628 (2008) · doi:10.1109/TSMCB.2008.915530
[10] Li, H. Y.; Wu, C. W.; Shi, P.; Gao, Y. B., Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach, IEEE Transactions on Cybernetics, 45, 11, 2378-2389 (2014) · doi:10.1109/TCYB.2014.2371814
[11] Li, H. Y.; Wu, C. W.; Wu, L. G.; Lam, H. K.; Gao, Y. B., Filtering of interval type-2 fuzzy systems with intermittent measurements, IEEE Transactions on Cybernetics, 46, 3, 668-678 (2015) · doi:10.1109/TCYB.2015.2413134
[12] Li, H. Y.; Wu, Y.; Chen, M., Adaptive fault-tolerant tracking control for discrete-time multi-agent systems via reinforcement learning algorithm, IEEE Transactions on Cybernetics, 51, 3, 1163-1174 (2020) · doi:10.1109/TCYB.2020.2982168
[13] Li, Q.; Pan, Y. N.; Zhang, Z. X.; Lam, H. K., Reliable dissipative interval type-2 fuzzy control for nonlinear systems with stochastic incomplete communication route and actuator failure, International Journal of Fuzzy Systems, 22, 2, 368-379 (2020) · doi:10.1007/s40815-020-00807-y
[14] Li, S.; Ahn, C. K.; Xiang, Z. R., Command filter based adaptive fuzzy finite-time control for switched nonlinear systems using state-dependent switching method, IEEE Transactions on Fuzzy Systems, 29, 4, 833-845 (2020) · doi:10.1109/TFUZZ.2020.2965917
[15] Li, X. D.; Yang, X. Y.; Huang, T. W., Persistence of delayed cooperative models: Impulsive control method, Applied Mathematics and Computation, 342, 130-146 (2019) · Zbl 1428.34113 · doi:10.1016/j.amc.2018.09.003
[16] Li, Y. M.; Yang, T. T.; Tong, S. C., Adaptive neural networks finite-time optimal control for a class of nonlinear systems, IEEE Transactions on Neural Networks and Learning Systems, 31, 11, 4451-4460 (2019) · doi:10.1109/TNNLS.2019.2955438
[17] Liang, H. J.; Liu, G. L.; Huang, T. W.; Lam, H. K.; Wang, B. H., Cooperative fault-tolerant control for networks of stochastic nonlinear systems with nondifferential saturation nonlinearity, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2020) · doi:10.1109/TSMC.2020.3020188
[18] Liang, H. J.; Liu, G. L.; Zhang, H. G.; Huang, T. W., Neural-network-based event-triggered adaptive control of nonaffine nonlinear multi-agent systems with dynamic uncertainties, IEEE Transactions on Neural Networks and Learning Systems (2020) · doi:10.1109/TNNLS.2020.3003950
[19] Liang, Y. J.; Li, Y. X.; Che, W. W.; Hou, Z. S., Adaptive fuzzy asymptotic tracking for nonlinear systems with nonstrict feedback structure, IEEE Transactions on Cybernetics, 51, 2, 853-861 (2020) · doi:10.1109/TCYB.2020.3002242
[20] Lin, G. H.; Li, H. Y.; Ma, H.; Yao, D. Y.; Lu, R. Q., Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults, IEEE/CAA Journal of Automatica Sinica (2020) · doi:10.1109/JAS.2020.1003596
[21] Liu, M.; Zhang, L. X.; Shi, P.; Zhao, Y. X., Sliding mode control of continuous-time Markovian jump systems with digital data transmission, Automatica, 80, 200-209 (2017) · Zbl 1370.93074 · doi:10.1016/j.automatica.2017.02.002
[22] Liu, M.; Zhang, L. X.; Shi, P.; Zhao, Y. X., Fault estimation sliding mode observer with digital communication constraints, IEEE Transactions on Automatic Control, 63, 10, 3434-3441 (2018) · Zbl 1423.93419 · doi:10.1109/TAC.9
[23] Liu, Q.; Leng, J. W.; Yan, D. X.; Zhang, D.; Wei, L. J.; Yu, A. L.; Zhao, R. L.; Zhang, H.; Chen, X., Digital twin-based designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing system, Journal of Manufacturing Systems, 58, 52-64 (2020) · doi:10.1016/j.jmsy.2020.04.012
[24] Lu, A. Y.; Yang, G. H., Distributed consensus control for multi-agent systems under denial-of-service, Information Sciences, 439, 95-107 (2018) · Zbl 1448.93297 · doi:10.1016/j.ins.2018.02.008
[25] Ma, H.; Li, H. Y.; Lu, R. Q.; Huang, T. W., Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances, SCIENCE CHINA Information Sciences, 63, 5, 150212:1-150212:15 (2020) · doi:10.1007/s11432-019-2680-1
[26] Pan, Y. N.; Du, P. H.; Xue, H.; Lam, H. K., Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance, IEEE Transactions on Fuzzy Systems (2020) · doi:10.1109/TFUZZ.2020.2999746
[27] Pan, Y. N.; Yang, G. H., Event-triggered fuzzy control for nonlinear networked control systems, Fuzzy Sets and Systems, 329, 91-107 (2017) · Zbl 1381.93064 · doi:10.1016/j.fss.2017.05.010
[28] Pang, Z. H.; Liu, G. P., Design and implementation of secure networked predictive control systems under deception attacks, IEEE Transactions on Control Systems Technology, 20, 5, 1334-1342 (2011) · doi:10.1109/TCST.2011.2160543
[29] Peng, C.; Yue, D.; Fei, M. R., Relaxed stability and stabilization conditions of networked fuzzy control systems subject to asynchronous grades of membership, IEEE Transactions on Fuzzy Systems, 22, 5, 1101-1112 (2013) · doi:10.1109/TFUZZ.91
[30] Precup, R. E.; David, R. C.; Petriu, E. M., Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity, IEEE Transactions on Industrial Electronics, 64, 1, 527-534 (2017) · doi:10.1109/TIE.2016.2607698
[31] Precup, R. E.; Radac, M. B.; Roman, R. C.; Petriu, E. M., Model-free sliding mode control of nonlinear systems: algorithms and experiments, Information Sciences, 381, 176-192 (2017) · doi:10.1016/j.ins.2016.11.026
[32] Qiu, J. B.; Gao, H. J.; Ding, S. X., Recent advances on fuzzy-model-based nonlinear networked control systems: A survey, IEEE Transactions on Industrial Electronics, 63, 2, 1207-1217 (2015) · doi:10.1109/TIE.2015.2504351
[33] Ren, H. R.; Karimi, H. R.; Lu, R. Q.; Wu, Y. Q., Synchronization of network systems via aperiodic sampled-data control with constant delay and application to unmanned ground vehicles, IEEE Transactions on Industrial Electronics, 67, 6, 4980-4990 (2019) · doi:10.1109/TIE.41
[34] Ren, H. R.; Lu, R. Q.; Xiong, J. L.; Wu, Y. Q.; Shi, P., Optimal filtered and smoothed estimators for discrete-time linear systems with multiple packet dropouts under Markovian communication constraints, IEEE Transactions on Cybernetics, 50, 9, 4169-4181 (2020) · doi:10.1109/TCYB.6221036
[35] Sakthivel, R.; Karthick, S. A.; Kaviarasan, B.; Alzahrani, F., Dissipativity-based non-fragile sampled-data control design of interval type-2 fuzzy systems subject to random delays, ISA Transactions, 83, 154-164 (2018) · doi:10.1016/j.isatra.2018.08.017
[36] Shao, X. F.; Ye, D., Fuzzy adaptive event-triggered secure control for stochastic nonlinear high-order MASs subject to DoS attacks and actuator faults, IEEE Transactions on Fuzzy Systems (2020) · doi:10.1109/TFUZZ.2020.3028657
[37] Su, X. J.; Shi, P.; Wu, L. G.; Basin, M. V., Reliable filtering with strict dissipativity for T-S fuzzy time-delay systems, IEEE Transactions on Cybernetics, 44, 12, 2470-2483 (2014) · doi:10.1109/TCYB.2014.2308983
[38] Sun, H. T.; Peng, C.; Wang, Y. L.; Tian, Y. C., Output-based resilient event-triggered control for networked control systems under denial of service attacks, IET Control Theory & Applications, 13, 16, 2521-2528 (2019) · doi:10.1049/cth2.v13.16
[39] Tang, X. M.; Deng, L.; Qu, H. C., Predictive control for networked interval type-2 T-S fuzzy system via an event-triggered dynamic output feedback scheme, IEEE Transactions on Fuzzy Systems, 27, 8, 1573-1586 (2018) · doi:10.1109/TFUZZ.91
[40] Tian, E. G.; Yue, D.; Yang, T. C.; Gu, Z.; Lu, G. P., T-S fuzzy model-based robust stabilization for networked control systems with probabilistic sensor and actuator failure, IEEE Transactions on Fuzzy Systems, 19, 3, 553-561 (2011) · doi:10.1109/TFUZZ.2011.2121069
[41] Tong, S. C.; Min, X.; Li, Y. X., Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions, IEEE Transactions on Cybernetics, 50, 9, 3903-3913 (2020) · doi:10.1109/TCYB.6221036
[42] Van, D. W. N.; Nesic, D.; Heemels, W. P. M. H., A discrete-time framework for stability analysis of nonlinear networked control systems, Automatica, 48, 6, 1144-1153 (2012) · Zbl 1244.93093 · doi:10.1016/j.automatica.2012.03.005
[43] Wei, Y.; Wang, Y. Y.; Ahn, C. K.; Duan, D. P., IBLF-based finite-time adaptive fuzzy output-feedback control for uncertain MIMO nonlinear state-constrained systems, IEEE Transactions on Fuzzy Systems (2020) · doi:10.1109/TFUZZ.2020.3021733
[44] Wu, C. W.; Wu, L. G.; Liu, J. X.; Jiang, Z. P., Active defense based resilient sliding mode control under Denial-of-Service attacks, IEEE Transactions on Information Forensics and Security, 15, 237-249 (2019) · doi:10.1109/TIFS.10206
[45] Wu, Y.; Pan, Y. N.; Chen, M.; Li, H. Y., Quantized adaptive finite-time bipartite NN tracking control for stochastic multi-agent systems, IEEE Transactions on Cybernetics (2020) · doi:10.1109/TCYB.2020.3008020
[46] Xiao, B.; Lam, H. K.; Li, H. Y., Stabilization of interval type-2 polynomial-fuzzy-model-based control systems, IEEE Transactions on Fuzzy Systems, 25, 1, 205-217 (2016) · doi:10.1109/TFUZZ.2016.2554153
[47] Xiao, B.; Lam, H. K.; Yu, Y.; Li, Y. D., Sampled-data output-feedback tracking control for interval type-2 polynomial fuzzy systems, IEEE Transactions on Fuzzy Systems, 28, 3, 424-433 (2019) · doi:10.1109/TFUZZ.91
[48] Xiao, B.; Lam, H. K.; Zhong, Z. X.; Wen, S. H., Membership-function-dependent stabilization of event-triggered interval type-2 polynomial fuzzy-model-based networked control systems, IEEE Transactions on Fuzzy Systems, 28, 12, 3171-3180 (2019) · doi:10.1109/TFUZZ.2019.2957256
[49] Xiao, W. B.; Cao, L.; Li, H. Y.; Lu, R. Q., Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay, SCIENCE CHINA Information Sciences, 63, 3, 132202:1-132202:17 (2020) · doi:10.1007/s11432-019-2678-2
[50] Yang, D.; Li, X. D.; Qiu, J. L., Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Analysis: Hybrid Systems, 32, 294-305 (2019) · Zbl 1425.93149 · doi:10.1016/j.nahs.2019.01.006
[51] Yang, H. J.; Ye, D., Observer-based fixed-time secure tracking consensus for networked high-order multiagent systems against DoS attacks, IEEE Transactions on Cybernetics (2020) · doi:10.1109/TCYB.2020.3005354
[52] Ye, D.; Zhang, T. Y., Summation detector for false data-injection attack in cyber-physical systems, IEEE Transactions on Cybernetics, 50, 6, 2338-2345 (2020) · doi:10.1109/TCYB.6221036
[53] Zeng, Z. G.; Wang, J., Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38, 6, 1525-1536 (2008) · doi:10.1109/TSMCB.2008.927717
[54] Zhai, D.; An, L. W.; Ye, D.; Zhang, Q. L., Adaptive reliable \(####\) static output feedback control against markovian jumping sensor failures, IEEE Transactions on Neural Networks and Learning Systems, 29, 3, 631-644 (2017) · doi:10.1109/TNNLS.2016.2639290
[55] Zhang, C. K.; Long, F.; He, Y.; Yao, W.; Jiang, L.; Wu, M., A relaxed quadratic function negative-determination lemma and its application to time-delay systems, Automatica, 113 (2020) · Zbl 1440.93144 · doi:10.1016/j.automatica.2019.108764
[56] Zhang, H. G.; Liu, Y.; Dai, J.; Wang, Y. C., Command filter based adaptive fuzzy finite-time control for a class of uncertain nonlinear systems with hysteresis, IEEE Transactions on Fuzzy Systems (2020) · doi:10.1109/TFUZZ.2020.3003499
[57] Zhang, H. G.; Liu, Y.; Wang, Y. C., Observer-based finite-time adaptive fuzzy control for nontriangular nonlinear systems with full-state constraints, IEEE Transactions on Cybernetics (2020) · doi:10.1109/TCYB.2020.2984791
[58] Zhang, W. A.; Yu, L., Output feedback stabilization of networked control systems with packet dropouts, IEEE Transactions on Automatic Control, 52, 9, 1705-1710 (2007) · Zbl 1366.93543 · doi:10.1109/TAC.2007.904284
[59] Zhang, Z. X.; Dong, J. X., Observer-based interval type-\(2 ####\) mixed fuzzy control for uncertain nonlinear systems under measurement outliers, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2020) · doi:10.1109/TSMC.2020.2980361
[60] Zhang, Z. X.; Zhou, Q.; Wu, C. W.; Li, H. Y., Dissipativity-based reliable interval type-2 fuzzy filter design for uncertain nonlinear systems, International Journal of Fuzzy Systems, 20, 2, 390-402 (2017) · doi:10.1007/s40815-017-0413-z
[61] Zheng, Y.; Pang, H. J.; Wang, H. O., Takagi-Sugeno fuzzy-model-based fault detection for networked control systems with Markov delays, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 36, 4, 924-929 (2006) · doi:10.1109/TSMCB.2005.861879
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.