×

Position control with zero residual vibration for two degrees-of-freedom flexible systems based on motion trajectory optimization. (English) Zbl 1530.93057

Summary: Zero residual vibration (RV) in the position control of a flexible system is difficult to achieve because this system has low stiffness and underactuated feature. In this paper, we present a position control strategy to achieve zero RV in the position control of two degrees-of-freedom (DOF) flexible systems. First, a general dynamic model for two-DOF flexible systems is established. Next, we transform the position control with zero RV to motion planning and tracking control. Based on the position control objective with zero RV, three constraints for the desired system trajectory are given. To make the desired system trajectory satisfy these three constraints, we propose a motion trajectory optimization method. Specifically, we plan a forward system trajectory and a reverse system trajectory based on bidirectional trajectory planning method. Then, the rewinding strategy and the trajectory optimization based on genetic algorithm are used to connect these two system trajectories and to obtain a complete desired system trajectory. Finally, a sliding mode tracking controller is designed to make the system track this desired system trajectory. In this way, the system can reach its target-rest-position with zero RV. The effectiveness and superiority of the proposed control strategy are demonstrated in simulations.

MSC:

93B12 Variable structure systems
Full Text: DOI

References:

[1] Abe, A., Trajectory planning for residual vibration suppression of a two-link rigid-flexible manipulator considering large deformation, Mech. Mach. Theory, 44, 1627-1639 (2009) · Zbl 1178.70002
[2] Bououden, S.; Chadli, M.; Karimi, H., An ant colony optimization-based fuzzy predictive control approach for nonlinear processes, Inf. Sci., 299, 143-158 (2015) · Zbl 1360.93372
[3] Chen, J.; Sun, F.; Sun, Y.; Yu, L., Modeling and controller design for complex flexible nonlinear systems via a fuzzy singularly perturbed approach, Inf. Sci., 255, 187-203 (2014) · Zbl 1321.93045
[4] Chen, W.; Ding, D.; Dong, H.; Wei, G., Distributed resilient filtering for power systems subject to denial-of-service attacks, IEEE Trans. Syst., Man, Cybern. Syst., 49, 1688-1697 (2019)
[5] Cole, M. O.T., A discrete-time approach to impulse-based adaptive input shaping for motion control without residual vibration, Automatica, 47, 2504-2510 (2011) · Zbl 1228.93068
[6] Cole, M. O.T.; Wongratanaphisan, T., A direct method of adaptive fir input shaping for motion control with zero residual vibration, IEEE/ASME Trans. Mechatron., 18, 316-327 (2013)
[7] Ding, D.; Wang, Z.; Han, Q., A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks, IEEE Trans. Autom. Control, 65, 1792-1799 (2020) · Zbl 1533.93453
[8] Dwivedy, S. K.; Eberhard, P., Dynamic analysis of flexible manipulators, a literature review, Mech. Mach. Theory, 41, 749-777 (2006) · Zbl 1095.70005
[9] Garrido, S.; Abderrahim, M.; Gimenez, A.; Diez, R.; Balaguer, C., Anti-swinging input shaping control of an automatic construction crane, IEEE Trans. Automat. Sci. Eng., 5, 549-557 (2008)
[10] S.I. Gass, M.C. Fu (Eds.), 2013. Lipschitz Continuous. Springer US, Boston, MA. pp. 888-888. · Zbl 0107.35503
[11] He, W.; Ge, S. S.; How, B. V.E.; Choo, Y. S.; Hong, K. S., Robust adaptive boundary control of a flexible marine riser with vessel dynamics, Automatica, 47, 722-732 (2011) · Zbl 1215.93073
[12] He, W.; Zhang, S.; Ge, S. S., Adaptive control of a flexible crane system with the boundary output constraint, IEEE Trans. Ind. Electron., 61, 4126-4133 (2014)
[13] Ibrahim, R., Recent advances in nonlinear passive vibration isolators, J. Sound Vib., 314, 371-452 (2008)
[14] Jiang, T. T.; Liu, J. K.; He, W., Boundary control for a flexible manipulator with a robust state observer, J. Vib. Control, 24, 260-271 (2018) · Zbl 1387.93085
[15] Jnifene, A., Active vibration control of flexible structures using delayed position feedback, Syst. Control Lett., 56, 215-222 (2007) · Zbl 1114.93038
[16] Keane, A., Passive vibration control via unusual geometries: the application of genetic algorithm optimization to structural design, J. Sound Vib., 185, 441-453 (1995) · Zbl 1048.74567
[17] Kim, B.; Yoo, H. H.; Chung, J., Robust motion profiles for the residual vibration reduction of an undamped system, J. Mech. Sci. Technol., 31, 4647-4656 (2017)
[18] Liu, Z.; Liu, J.; He, W., Partial differential equation boundary control of a flexible manipulator with input saturation, Int. J. Syst. Sci., 48, 53-62 (2017) · Zbl 1358.93094
[19] Maghsoudi, M. J.; Mohamed, Z.; Sudin, S.; Buyamin, S.; Jaafar, H.; Ahmad, S., An improved input shaping design for an efficient sway control of a nonlinear 3d overhead crane with friction, Mech. Syst. Signal Process., 92, 364-378 (2017)
[20] Meng, Q. X.; Lai, X. Z.; Wang, Y. W.; Wu, M., A fast stable control strategy based on system energy for a planar single-link flexible manipulator, Nonlinear Dyn., 94, 615-626 (2018)
[21] Q.X. Meng, X.Z. Lai, Z. Yan, M. Wu, Tip position control and vibration suppression of a planar two-link rigid-flexible underactuated manipulator, IEEE Trans. Cybern. (2020). doi: 10.1109/TCYB.2020.3035366.
[22] Pereira, E.; Trapero, J.; Díaz, I.; Feliu, V., Adaptive input shaping for manoeuvring flexible structures using an algebraic identification technique, Automatica, 45, 1046-1051 (2009) · Zbl 1162.93366
[23] Qiu, Z. C.; Han, J. D.; Zhang, X. M.; Wang, Y. C.; Wu, Z. W., Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator, J. Sound Vib., 326, 438-455 (2009)
[24] Sun, N.; Fang, Y. C., An efficient online trajectory generating method for underactuated crane systems, Int. J. Robust Nonlinear Control, 24, 1653-1663 (2014) · Zbl 1298.93243
[25] Sun, N.; Fang, Y. C., Partially saturated nonlinear control for gantry cranes with hardware experiments, Nonlinear Dyn., 77, 655-666 (2014) · Zbl 1314.93029
[26] Sun, N.; Fang, Y. C.; Zhang, Y. D.; Ma, B. J., A novel kinematic coupling-based trajectory planning method for overhead cranes, IEEE/ASME Trans. Mechatron., 17, 166-173 (2012)
[27] Sun, N.; Yang, T.; Fang, Y. C.; Lu, B.; Qian, Y. Z., Nonlinear motion control of underactuated three-dimensional boom cranes with hardware experiments, IEEE Trans. Ind. Inf., 14, 887-897 (2018)
[28] Thompson, B. S.; Sung, C. K., A variational formulation for the dynamic viscoelastic finite element analysis of robotic manipulators constructed from composite materials, ASME. J. Mech. Trans. Automat., 106, 183-190 (1984)
[29] Wang, J. J.; Liu, G. Y., Hierarchical sliding-mode control of spatial inverted pendulum with heterogeneous comprehensive learning particle swarm optimization, Inf. Sci., 495, 14-36 (2019) · Zbl 1454.93042
[30] Wang, M.; Fei, R., Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids, Int. J. Mach. Tool Manufact., 39, 1925-1934 (1999)
[31] F. Wu, S.E. Yildizoglu, A distributed parameter dependent control design for a flexible beam problem, in: Proceedings of the 2002 American Control Conference, 2002, pp. 3174-3179.
[32] Wu, J. D.; Wang, Y. W.; Ye, W. J.; Su, C. Y., Control strategy based on fourier transformation and intelligent optimization for planar pendubot, Inf. Sci., 491, 279-288 (2019) · Zbl 1451.70007
[33] J.D. Wu, W.J. Ye, Y.W. Wang, C.Y. Su, A general position control method for planar underactuated manipulators with second-order nonholonomic constraints, IEEE Trans. Cybern. (2019). doi: 10.1109/TCYB.2019.2951861.
[34] Yan, Z.; Lai, X. Z.; Meng, Q. X.; Wu, M., A novel robust control method for motion control of uncertain single-link flexible-joint manipulator, IEEE Trans. Syst. Man, Cybern. Syst., 51, 1671-1678 (2021)
[35] Yigit, A. S., On the stability of pd control for a two-link rigid-flexible manipulator, ASME J. Dyn. Systems Meas. Control, 116, 208-215 (1994) · Zbl 0807.93045
[36] Zhang, A. C.; She, J. H.; Lai, X. Z.; Wu, M., Motion planning and tracking control for an acrobot based on a rewinding approach, Automatica, 49, 278-284 (2013) · Zbl 1257.93071
[37] Zou, A. M.; de Ruiter, A. H.; Dev Kumar, K., Distributed attitude synchronization control for a group of flexible spacecraft using only attitude measurements, Inf. Sci., 343-344, 66-78 (2016)
[38] Zou, A. M.; Dev Kumar, K.; de Ruiter, A. H., Spacecraft attitude control using two control torques, Inf. Sci., 408, 23-40 (2017) · Zbl 1443.93093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.