×

Dynamics of transmission of a monkeypox epidemic in the presence of an imperfect vaccination. (English) Zbl 1530.92200

Summary: In May 2022, there was a disturbing news of monkeypox infection in the United Kingdom and soon after, other incidences of the infection were recorded in the United States and several countries where the disease is not known to be endemic. In this work, we investigate the impact of imperfect vaccination derived primarily from the smallpox vaccine on the spread of the virus. Our findings suggest that while imperfect vaccines may not provide complete protection against the disease, they can still reduce the transmission of monkeypox, potentially slowing the spread of the virus in a population.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
34A30 Linear ordinary differential equations and systems

Software:

Matlab

References:

[1] Cho, C. T.; Wenner, H. A., Monkeypox virus, Bacteriol Rev, 37, 1-18 (1973)
[2] Meyer, H.; Perrichot, M.; Stemmler, M.; Emmerich, P.; Schmitz, H.; Varaine, F., Outbreaks of disease suspected of being due to human monkeypox virus infection in the democratic Republic of Congo in 2001, J Clin Microbiol, 40, 8 (2002), 2919-2921
[3] Petersen, B. W.; Damon, I. K., Smallpox, monkeypox and other poxvirus infections, (Goldman-cecil medicine, vol. 2180-2183 (2020), Elsevier: Elsevier Philadelphia)
[4] 2022. https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON390.
[5] 2022. https://www.who.int/news-room/fact-sheets/detail/monkeypox.
[6] 2022. https://www.fda.gov/vaccines-blood-biologics/vaccines/key-facts-about-vaccines-prevent-monkeypox-disease/.
[7] Henderson, D., The eradication of smallpox – an overview of the past, present, and future, Vaccine, 29, 4, 7-9 (2011), PMID 22188929
[8] Metzger, W.; Mordmueller, B. G., Vaccines for preventing smallpox, (The cochrane database of systematic reviews, vol. 3 (2007), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester, UK)
[9] Taub, D. D.; Ershler, W. B.; Janowski, M.; Artz, A.; Keya, M. L.; McKelveya, J., Immunity from smallpox vaccine persists for decades: A longitudinal study, Am J Med, 121, 12 (2008), 1058-1064. http://dx.doi.org/10.1016/j.amjmed.2008.08.019, PMID: 19028201; PMCID: PMC2610468
[10] Safi, M. A.; Gumel, A. B., Mathematical analysis of a disease transmission model with quarantine, isolation and an imperfect vaccine, Comput Math Appl, 61 (2011), 3044-3070 · Zbl 1222.37102
[11] Usman, S.; Adamu, I., Modelling the transmission dynamics of the MonkeyPox virus infection with treatment and vaccination interventions, J Appl Math Phys, 5 (2017), 2335-2353
[12] Peter, O. J.; Kumar, S.; Kumari, N.; Oguntolu, F. A.; Oshinubi, K.; Musa, R., Transmission dynamics of monkeypox virus: a mathematical modelling approach, Model Earth Syst Environ, 8, 3 (2022), 3423-3434
[13] Lauko, I.; Pinter, G.; TeWinkel, R. E., Equilibrium analysis for an epidemic model with a reservoir for infection, Lett Biomath, 5, 1 (2018), 255-274
[14] Elbasha, E.; Podder, C.; Gumel, A., Analyzing the dynamics of an SIRS vaccination model with waning natural and vaccine-induced immunity, Nonlinear Anal RWA, 12 (2011), 2692-2705 · Zbl 1225.37104
[15] Gumel, A., Causes of backward bifurcations in some epidemiological models, J Math Anal Appl, 395 (2012), 355-365 · Zbl 1251.34065
[16] Bisanzio, D.; Reithinger, R., Projected case burden and duration of the 2022 Monkeypox outbreak in non-endemic countries, Lancet Microbe, 3, 9 (2022)
[17] Emeka, P. C.; Ounorah, M. O.; Eguda, F. Y.; Babangida, B. G., Mathematical model for monkeypox virus transmission dynamics, Epidemiology (Sunnyvale), 8, 3, 1-7 (2018)
[18] Okyere, S.; Ackora-Prah, J., Modeling and analysis of monkeypox disease using fractional derivatives, Results Eng, 17, 100786, 1-7 (2023)
[19] Neto, N. N.M.; Maia, M. R.G.; Mendes, J. M.; Zacarkim, M.; Aronoff, D. M.; Forgerini, F. L., Forecasting the monkeypox outbreak: Using a SIR epidemic model, Open Forum Infec Dis, 9, 2 (2022)
[20] Iyiola, O.; Oduro, B.; Zabilowicz, T.; Iyiola, B.; Kenes, D., System of time fractional models for COVID-19: modeling, analysis and solutions, Symmetry, 13, 787 (2021)
[21] Iyiola, O.; Oduro, B.; Akinyemi, L., Analysis and solutions of generalized chagas vectors re-infestation model of fractional order type, Chaos Solitons Fractals, 147, Article 110797 pp. (2021)
[22] Oke, S.; Ekum, M.; Akintande, O.; Adeniyi, M.; Adekiya, T.; Achadu, O., Optimal control of the coronavirus pandemic with both pharmaceutical and non-pharmaceutical interventions, Int J Dyn Control, 1-25 (2023)
[23] Owusu-Mensah, I.; Akinyemi, L.; Oduro, B.; Iyiola, O., A fractional order approach to modeling and simulations of the novel COVID-19, Adv Difference Equ, 1-21 (2020) · Zbl 1485.92148
[24] Eikenberry, S. E.; Mancuso, M.; Iboi, E.; Phan, T.; Eikenberry, K.; Kuang, Y., To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic, Infect Dis Model, 5 (2020), 293-308
[25] Biala, T.; Afolabi, Y.; Khaliq, A., How efficient is contact tracing in mitigating the spread of Covid-19? A mathematical modeling approach, Appl Math Model, 103 (2022), 714-730 · Zbl 1525.92062
[26] 2022. https://www.cdc.gov/poxvirus/monkeypox/clinicians/smallpox-vaccine.html.
[27] Safi, M. A.; Gumel, A. B., Global asymptotic dynamics of a model for quarantine and isolation, Discrete Contin Dyn Syst, 14, 1 (2010), 209-231 · Zbl 1193.92075
[28] Musa, S.; Yusuf, A.; Bakare, E. A.; Abdullahi, Z. U.; Adamu, L.; Mustapha, U. T., Unravelling the dynamics of Lassa fever transmission with differential infectivity: Modeling analysis and control strategies, Math Biosci Eng, 19 (2022), 13114-13136 · Zbl 1508.92284
[29] Silenou, B. C.; Tom-Aba, D.; Adeoye, O.; Arinze, C. C.; Oyiri, F.; Suleman, A. K., Use of surveillance outbreak response management and analysis system for human Monkeypox outbreak, Nigeria, 2017-2019, Emerg Infect Diseases, 26, 2 (2020)
[30] Al-Shomrani, M. M.; Musa, S. S.; Yusuf, A., A. Unfolding the transmission dynamics of Monkeypox virus: An epidemiological modelling analysis, Mathematics, 11, 1121 (2023)
[31] Yuan, P.; Tan, Y.; Yang, L.; Aruffo, E.; Ogden, N. H.; Bélair, J., Assessing transmission risks and control strategy for monkeypox as an emerging zoonosis in a metropolitan area, J Med Virol, 95 (2022)
[32] Bhunu, C.; Mushayabasa, S., Modelling the transmission dynamics of Pox-like infections, Int J Appl Math, 41, 2 (2011) · Zbl 1229.34082
[33] Diekmann, O.; Heesterbeek, J. A.P.; Roberts, M. G., The construction of next-generation matrices for compartmental epidemic models, J Royal Soc Interface, 7 (2009), 873-885
[34] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180, 1, 29-48 (2002) · Zbl 1015.92036
[35] The MathWorks Inc., P., MATLAB version: 9.3.0.713579 (R2017b) (2017), The MathWorks Inc.: The MathWorks Inc. Natick, Massachusetts, United States, URL https://www.mathworks.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.