×

Utility maximization with ratchet and drawdown constraints on consumption in incomplete semimartingale markets. (English) Zbl 1530.91556

Summary: In this paper, we study expected utility maximization under ratchet and drawdown constraints on consumption in a general incomplete semimartingale market using duality methods. The optimization is considered with respect to two parameters: the initial wealth and the essential lower bound on consumption process. In order to state the problem and define the primal domains, we introduce a natural extension of the notion of running maximum to arbitrary nonnegative optional processes and study its properties. The dual domains for optimization are characterized in terms of solidity with respect to an ordering that is introduced on the set of nonnegative optional processes. The abstract duality result we obtain for the optimization problem is used in order to derive a more detailed characterization of solutions in the complete market case.

MSC:

91G15 Financial markets
93E20 Optimal stochastic control
91G80 Financial applications of other theories
91B16 Utility theory

References:

[1] ARUN, T. (2012). The Merton problem with a drawdown constraint on consumption.
[2] BANK, P. and EL KAROUI, N. (2004). A stochastic representation theorem with applications to optimization and obstacle problems. Ann. Probab. 32 1030-1067. Digital Object Identifier: 10.1214/aop/1079021471 Google Scholar: Lookup Link MathSciNet: MR2044673 · Zbl 1058.60022 · doi:10.1214/aop/1079021471
[3] BANK, P. and KAUPPILA, H. (2017). Convex duality for stochastic singular control problems. Ann. Appl. Probab. 27 485-516. Digital Object Identifier: 10.1214/16-AAP1209 Google Scholar: Lookup Link MathSciNet: MR3619793 · Zbl 1360.93765 · doi:10.1214/16-AAP1209
[4] BRANNATH, W. and SCHACHERMAYER, W. (1999). A bipolar theorem for \(\mathit{L}_+^0(\operatorname{\Omega}, \mathcal{F}, \mathbf{P})\). In Séminaire de Probabilités, XXXIII. Lecture Notes in Math. 1709 349-354. Springer, Berlin. Digital Object Identifier: 10.1007/BFb0096525 Google Scholar: Lookup Link MathSciNet: MR1768009 · Zbl 0957.46020 · doi:10.1007/BFb0096525
[5] CHAU, H. N., COSSO, A., FONTANA, C. and MOSTOVYI, O. (2017). Optimal investment with intermediate consumption under no unbounded profit with bounded risk. J. Appl. Probab. 54 710-719. Digital Object Identifier: 10.1017/jpr.2017.29 Google Scholar: Lookup Link MathSciNet: MR3707824 · Zbl 1416.91344 · doi:10.1017/jpr.2017.29
[6] DELBAEN, F. and SCHACHERMAYER, W. (1994). A general version of the fundamental theorem of asset pricing. Math. Ann. 300 463-520. Digital Object Identifier: 10.1007/BF01450498 Google Scholar: Lookup Link MathSciNet: MR1304434 · Zbl 0865.90014 · doi:10.1007/BF01450498
[7] Dellacherie, C. and Meyer, P.-A. (1978). Probabilities and Potential. North-Holland Mathematics Studies 29. North-Holland, Amsterdam. MathSciNet: MR0521810 · Zbl 0494.60001
[8] DELLACHERIE, C. and MEYER, P.-A. (1982). Probabilities and Potential. B: Theory of Martingales. North-Holland Mathematics Studies 72. North-Holland, Amsterdam. Translated from the French by J. P. Wilson. MathSciNet: MR0745449 · Zbl 0494.60002
[9] DYBVIG, P. H. (1995). Dusenberry’s ratcheting of consumption: Optimal dynamic consumption and investment given intolerance for any decline in standard of living. Rev. Econ. Stud. 62 287-313. Digital Object Identifier: 10.2307/2297806 Google Scholar: Lookup Link · Zbl 0830.90025 · doi:10.2307/2297806
[10] HUGONNIER, J. and KRAMKOV, D. (2004). Optimal investment with random endowments in incomplete markets. Ann. Appl. Probab. 14 845-864. Digital Object Identifier: 10.1214/105051604000000134 Google Scholar: Lookup Link MathSciNet: MR2052905 · Zbl 1086.91030 · doi:10.1214/105051604000000134
[11] JEON, J., KOO, H. K. and SHIN, Y. H. (2018). Portfolio selection with consumption ratcheting. J. Econom. Dynam. Control 92 153-182. Digital Object Identifier: 10.1016/j.jedc.2018.05.003 Google Scholar: Lookup Link MathSciNet: MR3830716 · Zbl 1401.91520 · doi:10.1016/j.jedc.2018.05.003
[12] JEON, J. and PARK, K. (2021). Portfolio selection with drawdown constraint on consumption: A generalization model. Math. Methods Oper. Res. 93 243-289. Digital Object Identifier: 10.1007/s00186-020-00734-6 Google Scholar: Lookup Link MathSciNet: MR4277170 · Zbl 1468.91136 · doi:10.1007/s00186-020-00734-6
[13] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics 113. Springer, New York. Digital Object Identifier: 10.1007/978-1-4612-0949-2 Google Scholar: Lookup Link MathSciNet: MR1121940 · Zbl 0734.60060 · doi:10.1007/978-1-4612-0949-2
[14] KARATZAS, I. and ŽITKOVIĆ, G. (2003). Optimal consumption from investment and random endowment in incomplete semimartingale markets. Ann. Probab. 31 1821-1858. Digital Object Identifier: 10.1214/aop/1068646367 Google Scholar: Lookup Link MathSciNet: MR2016601 · Zbl 1076.91017 · doi:10.1214/aop/1068646367
[15] KOO, B. L., KOO, H. K., KOO, J. L. and HYUN, C. (2012). A generalization of Dybvig’s result on portfolio selection with intolerance for decline in consumption. Econom. Lett. 117 646-649. Digital Object Identifier: 10.1016/j.econlet.2012.08.027 Google Scholar: Lookup Link MathSciNet: MR2973554 · Zbl 1283.91167 · doi:10.1016/j.econlet.2012.08.027
[16] KRAMKOV, D. and SCHACHERMAYER, W. (1999). The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9 904-950. Digital Object Identifier: 10.1214/aoap/1029962818 Google Scholar: Lookup Link MathSciNet: MR1722287 · Zbl 0967.91017 · doi:10.1214/aoap/1029962818
[17] KRAMKOV, D. and SCHACHERMAYER, W. (2003). Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13 1504-1516. Digital Object Identifier: 10.1214/aoap/1069786508 Google Scholar: Lookup Link MathSciNet: MR2023886 · Zbl 1091.91036 · doi:10.1214/aoap/1069786508
[18] MOSTOVYI, O. (2015). Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption. Finance Stoch. 19 135-159. Digital Object Identifier: 10.1007/s00780-014-0248-5 Google Scholar: Lookup Link MathSciNet: MR3292127 · Zbl 1309.91134 · doi:10.1007/s00780-014-0248-5
[19] RIEDEL, F. (2009). Optimal consumption choice with intolerance for declining standard of living. J. Math. Econom. 45 449-464. Digital Object Identifier: 10.1016/j.jmateco.2009.03.010 Google Scholar: Lookup Link MathSciNet: MR2559623 · Zbl 1163.91460 · doi:10.1016/j.jmateco.2009.03.010
[20] ROCKAFELLAR, R. T. (1997). Convex Analysis. Princeton Landmarks in Mathematics. Princeton Univ. Press, Princeton, NJ. Reprint of the 1970 original, Princeton Paperbacks. MathSciNet: MR1451876 · Zbl 0932.90001
[21] WATSON, J. G. and SCOTT, J. S. (2014). Ratchet consumption over finite and infinite planning horizons. J. Math. Econom. 54 84-96. Digital Object Identifier: 10.1016/j.jmateco.2014.09.001 Google Scholar: Lookup Link MathSciNet: MR3269198 · Zbl 1308.91101 · doi:10.1016/j.jmateco.2014.09.001
[22] YU, X. (2015). Utility maximization with addictive consumption habit formation in incomplete semimartingale markets. Ann. Appl. Probab. 25 1383-1419. Digital Object Identifier: 10.1214/14-AAP1026 Google Scholar: Lookup Link MathSciNet: MR3325277 · Zbl 1312.91084 · doi:10.1214/14-AAP1026
[23] ŽITKOVIĆ, G. (2005). Utility maximization with a stochastic clock and an unbounded random endowment. Ann. Appl. Probab. 15 748-777. Digital Object Identifier: 10.1214/105051604000000738 Google Scholar: Lookup Link MathSciNet: MR2114989 · Zbl 1108.91032 · doi:10.1214/105051604000000738
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.