×

Efficacious symmetry-adapted atomic displacement method for lattice dynamical studies. (English) Zbl 1530.81150

Summary: Small displacement methods have been successfully used to calculate the lattice dynamical properties of crystals. It involves displacing atoms by a small amount in order to calculate the induced forces on all atoms in a supercell for the computation of force constants. Even though these methods are widely in use, to our knowledge, there is no systematic discussion of optimal displacement directions from the crystal’s symmetry point of view nor a rigorous error analysis of such methods. Based on the group theory and point group symmetry of a crystal, we propose displacement directions, with an equivalent concept of the group of \(k\), deduced directly in the Cartesian coordinates rather than the usual fractional coordinates, that maintain the theoretical maximum for the triple product \(V\) spanned by the three displacements to avoid possible severe roundoff errors. The proposed displacement directions are generated from a minimal set of irreducible atomic displacements that keep the required independent force calculations to a minimum. We find the error in the calculated force constants explicitly depends on the inverse of \(V\) and inaccuracy of the forces. Test systems such as Si, graphene, and orthorhombic \(\mathrm{Sb_2S}_3\) are used to illustrate the method. Our symmetry-adapted atomic displacement method is shown to be very robust in treating low-symmetry cells with a large ‘aspect ratio’ due to huge differences in lattice parameters, use of a large vacuum height, or a very oblique unit cell due to unconventional choice of primitive lattice vectors. It is expected that our atomic displacement strategy can be used to address higher-order interatomic interactions to achieve good accuracy and efficiency.

MSC:

81V45 Atomic physics
81V80 Quantum optics
22E70 Applications of Lie groups to the sciences; explicit representations
82D25 Statistical mechanics of crystals
70J35 Forced motions in linear vibration theory
65G40 General methods in interval analysis
65G50 Roundoff error
81P55 Special bases (entangled, mutual unbiased, etc.)
81P47 Quantum channels, fidelity

Software:

Phonopy

References:

[1] Born, M.; Huang, K., Dynamical Theory of Crystal Lattices (1956), Oxford University Press: Oxford University Press London · Zbl 0074.33601
[2] van de Walle, A.; Ceder, G., Rev. Modern Phys., 74, 11 (2002)
[3] Gan, C. K.; Fan, X. F.; Kuo, J.-L., Comput. Mater. Sci., 49, S29 (2010)
[4] Zhong, W.; King-Smith, R. D.; Vanderbilt, D., Phys. Rev. Lett., 72, 3618 (1994)
[5] Zhao, Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S.; Xiong, Q. H., Nano Lett., 13, 1007 (2013)
[6] Chong, W. K.; Xing, G.; Liu, Y.; Gui, E. L.; Zhang, Q.; Xiong, Q.; Mathews, N.; Gan, C. K.; Sum, T. C., Phys. Rev. B, 90, Article 035208 pp. (2014)
[7] Giovanni, D.; Chong, W. K.; Liu, Y. Y.F.; Dewi, H. A.; Yin, T.; Lekina, Y.; Shen, Z. X.; Mathews, N.; Gan, C. K.; Sum, T. C., Adv. Sci., 5, Article 1800664 pp. (2018)
[8] Giustino, F., Rev. Modern Phys., 89, Article 015003 pp. (2017)
[9] Togo, A.; Oba, F.; Tanaka, I., Phys. Rev. B, 78, Article 134106 pp. (2008)
[10] Grimvall, G., Thermophysical Properties of Materials (1999), Elsevier Science B.V.: Elsevier Science B.V. Amsterdam, The Netherlands
[11] Mujica, A.; Rubio, A.; Munoz, A.; Needs, R. J., Rev. Modern Phys., 75, 863 (2003)
[12] Mounet, N.; Marzari, N., Phys. Rev. B, 71, Article 205214 pp. (2005)
[13] Allen, P. B., Modern Phys. Lett. B, 34, Article 2050025 pp. (2020)
[14] Malica, C.; Corso, A. D., J. Phys.: Condens. Matter, 32, Article 315902 pp. (2020)
[15] Toher, C.; Plata, J. J.; Levy, O.; de Jong, M.; Asta, M.; BuongiornoNardelli, M.; Curtarolo, S., Phys. Rev. B, 90, Article 174107 pp. (2014)
[16] Snyder, G. J.; Toberer, E. S., Nature Mater., 7, 105 (2008)
[17] Madsen, G. K.H.; Katre, A.; Bera, C., Phys. Status Solidi b, 213, 802 (2016)
[18] Gorai, P.; Stevanović, V.; Toberer, E., Nature Rev. Mat., 2, 17053 (2017)
[19] Gan, C. K.; Soh, J. R.; Liu, Y., Phys. Rev. B, 92, Article 235202 pp. (2015)
[20] Arnaud, B.; Lebègue, S.; Raffy, G., Phys. Rev. B, 93, Article 094106 pp. (2016)
[21] Gan, C. K.; Liu, Y. Y.F., Phys. Rev. B, 94, Article 134303 pp. (2016)
[22] Romao, C. P., Phys. Rev. B, 96, Article 134113 pp. (2017)
[23] Gan, C. K.; Lee, C. H., Comput. Mater. Sci., 151, 49 (2018)
[24] Gan, C. K.; Chua, K. T.E., J. Phys.: Condens. Matter, 31, Article 265401 pp. (2019)
[25] Lee, C. H.; Gan, C. K., Phys. Rev. B, 96, Article 035105 pp. (2017)
[26] Petretto, G.; Dwaraknath, S.; Miranda, H. P.; Winston, D.; Giantomassi, M.; van Setten, M. J.; Gonze, X.; Persson, K. A.; Hautier, G.; Rignanese, G.-M., Sci. Data, 5, Article 180065 pp. (2018)
[27] Togo, A., Phonon database at Kyoto University (2020)
[28] Curtarolo, S.; Hart, G. L.W.; BuongiornoNardelli, M.; Mingo, N.; Sanvito, S.; Levy, O., Nature Mater., 12, 191 (2013)
[29] Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G., Comput. Mater. Sci., 68, 314 (2013)
[30] Pizzi, G.; Cepellotti, A.; Sabatini, R.; Marzari, N.; Kozinsky, B., Comput. Mater. Sci., 111, 218 (2016)
[31] Parlinski, K.; Li, Z. Q.; Kawazoe, Y., Phys. Rev. Lett., 78, 4063 (1997)
[32] Wang, Y.; Chen, L.-Q.; Liu, Z.-K., Comput. Phys. Comm., 185, 2950 (2014)
[33] Wang, Y.; Shang, S.-L.; Fang, H.; Liu, Z.-K.; Chen, L.-Q., NPJ Comp. Mater., 2, 16006 (2016)
[34] Ackland, G. J.; Warren, M. C.; Clark, S. J., J. Phys.: Condens. Matter, 9, 7861 (1997)
[35] Togo, A.; Tanaka, I., Scr. Mater., 108, 1 (2015)
[36] Togo, A., Phonopy (2020), GitHub
[37] Alfè, D., Comput. Phys. Comm., 180, 2622 (2009)
[38] Kresse, G.; Furthmüller, J.; Hafner, J., Europhys. Lett., 32, 729 (1995)
[39] Feynman, R. P., Phys. Rev., 56, 340 (1939) · Zbl 0022.42302
[40] Lloyd-Williams, J. H.; Monserrat, B., Phys. Rev. B, 92, Article 184301 pp. (2015)
[41] Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P., Rev. Modern Phys., 73, 515 (2001)
[42] Gonze, X., Phys. Rev. B, 55, 10337 (1997)
[43] Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M., J. Phys.: Condens. Matter, 21, Article 395502 pp. (2009)
[44] Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M.; Deutsch, T.; Genovese, L.; Ghosez, P.; Giantomassi, M.; Goedecker, S.; Hamann, D.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveir, M.; Onidab, G.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M.; Zerah, G.; Zwanziger, J., Comput. Phys. Comm., 180, 2582 (2009)
[45] Fu, L.; Kornbluth, M.; Cheng, Z.; Marianetti, C. A., Phys. Rev. B, 100, Article 014303 pp. (2019)
[46] Parlinski, K., Phys. Rev. B, 98, Article 054305 pp. (2018)
[47] International Tables for Crystallography (2006). Vol. A, Space-Group Symmetry (2006), Chester: Chester International Union of Crystallography
[48] Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A., Group Theory: Application to the Physics of Condensed Matter (2008), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1175.20001
[49] Burns, G., Solid State Physics (1985), Academic Press: Academic Press Orlando, Florida
[50] Liu, Y.; Chua, K. T.E.; Sum, T. C.; Gan, C. K., Phys. Chem. Chem. Phys., 16, 345 (2014)
[51] Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D., Rev. Modern Phys., 64, 1045 (1992)
[52] Gan, C. K.; Haynes, P. D.; Payne, M. C., Comput. Phys. Comm., 134, 33 (2001) · Zbl 0976.65037
[53] Altmann, S. L., Band tHeory of Solids: An Introduction from the Point of View of Symmetry (1991), Oxford University Press: Oxford University Press Walton Street, Oxford OX2 6DP
[54] Zhao, Y. Y.; Chua, K. T.E.; Gan, C. K.; Zhang, J.; Peng, B.; Peng, Z. P.; Xiong, Q. H., Phys. Rev. B, 84, Article 205330 pp. (2011)
[55] Gan, C. K.; Srolovitz, D. J., Phys. Rev. B, 81, Article 125445 pp. (2010)
[56] Kresse, G.; Furthmüller, J., Comput. Mater. Sci., 6, 15 (1996)
[57] Setyawan, W.; Curtarolo, S., Comput. Mater. Sci., 49, 299 (2010)
[58] Nespolo, M.; Aroyo, M. I., Acta Cryst. A, 72, 523 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.