×

Homogenization of elastomers filled with liquid inclusions: the small-deformation limit. (English) Zbl 1530.74063

Summary: This paper presents the derivation of the homogenized equations that describe the macroscopic mechanical response of elastomers filled with liquid inclusions in the setting of small quasistatic deformations. The derivation is carried out for materials with periodic microstructure by means of a two-scale asymptotic analysis. The focus is on the non-dissipative case when the elastomer is an elastic solid, the liquid making up the inclusions is an elastic fluid, the interfaces separating the solid elastomer from the liquid inclusions are elastic interfaces featuring an initial surface tension, and the inclusions are initially \(n\)-spherical \((n=2,3)\) in shape. Remarkably, in spite of the presence of local residual stresses within the inclusions due to an initial surface tension at the interfaces, the macroscopic response of such filled elastomers turns out to be that of a linear elastic solid that is free of residual stresses and hence one that is simply characterized by an effective modulus of elasticity \(\overline{{\mathbf{L}}}\). What is more, in spite of the fact that the local moduli of elasticity in the bulk and the interfaces do not possess minor symmetries (due to the presence of residual stresses and the initial surface tension at the interfaces), the resulting effective modulus of elasticity \(\overline{{\mathbf{L}}}\) does possess the standard minor symmetries of a conventional linear elastic solid, that is, \(\overline{L}_{ijkl}=\overline{L}_{jikl}=\overline{L}_{ijlk}\). As an illustrative application, numerical results are worked out and analyzed for the effective modulus of elasticity of isotropic suspensions of incompressible liquid 2-spherical inclusions of monodisperse size embedded in an isotropic incompressible elastomer.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
74Q15 Effective constitutive equations in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics

References:

[1] Lopez-Pamies, O., Elastic dielectric composites: theory and application to particle-filled ideal dielectrics, J. Mech. Phys. Solids, 64, 61-82 (2014) · doi:10.1016/j.jmps.2013.10.016
[2] Style, R. W.; Boltyanskiy, R.; Benjamin, A.; Jensen, K. E.; Foote, H. P.; Wettlaufer, J. S.; Dufresne, E. R., Stiffening solids with liquid inclusions, Nat. Phys., 11, 82-87 (2015) · doi:10.1038/nphys3181
[3] Bartlett, M. D.; Kazem, N.; Powell-Palm, M. J.; Huang, X.; Sun, W.; Malen, J. A.; Majidi, C., High thermal conductivity in soft elastomers with elongated liquid metal inclusions, Proc. Natl. Acad. Sci., 114, 2143-2148 (2017) · doi:10.1073/pnas.1616377114
[4] Lefèvre, V.; Danas, K.; Lopez-Pamies, O., A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens, J. Mech. Phys. Solids, 107, 343-364 (2017) · doi:10.1016/j.jmps.2017.06.017
[5] Lefèvre, V.; Garnica, A.; Lopez-Pamies, O., A WENO finite-difference scheme for a new class of Hamilton-Jacobi equations in nonlinear solid mechanics, Comput. Methods Appl. Mech. Eng., 349, 17-44 (2019) · Zbl 1441.74293 · doi:10.1016/j.cma.2019.02.008
[6] Yun, G.; Tang, S. Y.; Sun, S.; Yuan, D.; Zhao, Q.; Deng, L.; Yan, S.; Du, H.; Dickey, M. D.; Li, W., Liquid metal-filled magnetorheological elastomer with positive piezoconductivity, Nat. Commun., 10, 1300 (2019) · doi:10.1038/s41467-019-09325-4
[7] Ghosh, K.; Lopez-Pamies, O., Elastomers filled with liquid inclusions: theory, numerical implementation, and some basic results, J. Mech. Phys. Solids, 166 (2022) · doi:10.1016/j.jmps.2022.104930
[8] Coxeter, H. S.M., Regular Polytopes (1973), Mineola, NY: Dover, Mineola, NY · Zbl 0031.06502
[9] do Carmo, M. P., Differential Geometry of Curves and Surfaces (2016), Mineola: Dover, Mineola · Zbl 1352.53002
[10] Gurtin, M. E.; Weissmüller, J.; Larché, F., A general theory of curved deformable interfaces in solids at equilibrium, Philos. Mag. A, 78, 1093-1109 (1998) · doi:10.1080/01418619808239977
[11] Sharma, P.; Ganti, S.; Bhate, N., Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett., 82, 535-537 (2003) · doi:10.1063/1.1539929
[12] Style, R. W.; Wettlaufer, J. S.; Dufresne, E. R., Surface tension and the mechanics of liquid inclusions in compliant solids, Soft Matter, 11, 672-679 (2015) · doi:10.1039/C4SM02413C
[13] Sanchez-Palencia, E., Nonhomogeneous Media and Vibration Theory (1980), New York: Springer, New York · Zbl 0432.70002
[14] Bensoussan, A.; Lions, J. L.; Papanicolau, G., Asymptotic Analysis for Periodic Structures (2011), Providence: AMS, Chelsea, Providence · Zbl 1229.35001
[15] Lefèvre, V.; Lopez-Pamies, O., Homogenization of elastic dielectric composites with rapidly oscillating passive and active source terms, SIAM J. Appl. Math., 77, 1962-1988 (2017) · Zbl 1380.35016 · doi:10.1137/17M1110432
[16] Francfort, G. A.; Gloria, A.; Lopez-Pamies, O., Enhancement of elasto-dielectrics by homogenization of active charges, J. Math. Pures Appl., 156, 392-419 (2021) · Zbl 1483.35016 · doi:10.1016/j.matpur.2021.10.002
[17] Andreotti, B.; Bäumchen, O.; Boulogne, F.; Daniels, K. E.; Dufresne, E. R.; Perrin, H.; Salez, T.; Snoeijer, J. H.; Style, R. W., Solid capillarity: when and how does surface tension deform soft solids?, Soft Matter, 12, 2993-2996 (2016) · doi:10.1039/C5SM03140K
[18] Bico, J.; Reyssat, E.; Elastocapillarity, B. R., When surface tension deforms elastic solids, Annu. Rev. Fluid Mech., 50, 629-659 (2018) · Zbl 1384.76015 · doi:10.1146/annurev-fluid-122316-050130
[19] Gusev, A. A., Representative volume element size for elastic composites: a numerical study, J. Mech. Phys. Solids, 45, 1449-1459 (1997) · Zbl 0977.74512 · doi:10.1016/S0022-5096(97)00016-1
[20] Lopez-Pamies, O.; Goudarzi, T.; Danas, K., The nonlinear elastic response of suspensions of rigid inclusions in rubber: II — A simple explicit approximation for finite-concentration suspensions, J. Mech. Phys. Solids, 61, 19-37 (2013) · Zbl 1258.74016 · doi:10.1016/j.jmps.2012.08.013
[21] Lubachevsky, B. D.; Stillinger, F. H., Geometric properties of random disk packings, J. Stat. Phys., 60, 561-583 (1990) · Zbl 1086.82569 · doi:10.1007/BF01025983
[22] Ghosh, K.; Lefèvre, V.; Lopez-Pamies, O., The effective shear modulus of a random isotropic suspension of monodisperse liquid \(n\)-spheres: from the dilute limit to the percolation threshold, Soft Matter, 19, 208-224 (2023) · doi:10.1039/D2SM01219G
[23] Lefèvre, V.; Francfort, G. A.; Lopez-Pamies, O., The curious case of 2d isotropic incompressible neo-hookean composites, Journal of Elasticity, 149, 1-8 (2022) · Zbl 1504.74005
[24] Lefèvre, V.; Lopez-Pamies, O., The effective shear modulus of a random isotropic suspension of monodisperse rigid \(n\)-spheres: from the dilute limit to the percolation threshold, Extreme Mech. Lett., 55 (2022) · doi:10.1016/j.eml.2022.101818
[25] Papanicolaou, G. C.; Varadhan, S. R.S., Boundary value problems with rapidly oscillating random coefficients, Colloq. Math. Soc. János Bolyai, 27, 835-873 (1981) · Zbl 0499.60059
[26] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. R. Soc. Lond. A, 241, 376-396 (1967) · Zbl 0079.39606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.