×

Singular expansions and collocation methods for generalized Abel integral equations. (English) Zbl 1530.65188

Summary: In this paper, the generalized Abel integral equation with singular solution is studied. First, the finite-term psi-series expansion of the solution about the origin is derived using the method of undetermined coefficients, which gives the complete singular information of the solution. Second, this singular expansion is used to separate the singularity such that the Abel integral equation is converted into a perturbed one with smooth solution on a regular interval. Third, a product trapezoidal method is designed to solve the transformed equation on the regular interval and the convergence analysis is conducted to show that the scheme has second order accuracy combining with a controllable perturbation term. Fourth, a Chebyshev collocation method is further constructed on the regular interval to show that the global orthogonal polynomial interpolation is also suitable for solving the transformed Abel integral equation with high accuracy. Finally, two numerical examples confirm the correctness of the truncated psi-series solution and the effectiveness of the piecewise and global collocation methods with singularity separation for solving this kind of Abel integral equation.

MSC:

65R20 Numerical methods for integral equations
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
Full Text: DOI

References:

[1] Gorenflo, R.; Vessella, S., Abel Integral Equations: Analysis and Applications (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0717.45002
[2] Sizikov, V.; Sidorov, D., Generalized quadrature for solving singular integral equations of Abel type in application to infrared tomography, Appl. Numer. Math., 106, 69-78 (2016) · Zbl 1416.65552
[3] Delgado, V., A stable approach to a kind of problems involving the inversion of a Volterra integral equation of the first kind: application to x-ray fluorescence analysis, J. Math. Chem., 52, 1129-1136 (2014) · Zbl 1297.45003
[4] Yurov, A. V.; Yaparova, A. V.; Yurov, V. A., Application of the Abel equation of the 1st kind to inflation analysis of non-exactly solvable cosmological models, Gravit. Cosmol., 20, 106-115 (2014) · Zbl 1338.83232
[5] Linz, P., Analytical and Numerical Methods for Volterra Equations (1985), SIAM: SIAM Philadelphia · Zbl 0566.65094
[6] Brunner, H., Volterra Integral Equations: An Introduction to Theory and Applications (2017), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1376.45002
[7] Polyanin, A. D.; Manzhirov, A. V., Handbook of Integral Equations (2008), Chapman & Hall/CRC: Chapman & Hall/CRC London · Zbl 1154.45001
[8] te Riele, H. J.J.; Schroevers, P., A comparative survey of numerical methods for the linear generalized Abel integral equation, ZAMM Z. Angew. Math. Mech., 66, 163-173 (1986) · Zbl 0618.65138
[9] Branca, H. W., The nonlinear Volterra equation of Abel’s kind and its numerical treatment, Computing, 20, 307-324 (1978) · Zbl 0394.65047
[10] Eggermont, P. P.B., Stability and robustness of collocation methods for Abel-type integral equations, Numer. Math., 45, 431-445 (1984) · Zbl 0556.65097
[11] Brunner, H., Collocation Methods for Volterra Integral and Related Functional Equations (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1059.65122
[12] Karamali, G.; Shiri, B.; Kashfi, M., Convergence analysis of piecewise polynomial collocation methods for system of weakly singular Volterra integral equations of the first kind, Appl. Comput. Math., 7, 1-11 (2018), Special Issue: Singular Integral Equations and Fractional Differential Equations
[13] Raziyeh, D.; Khadijeh, N., Numerical solution of nonlinear weakly singular Volterra integral equations of the first kind: An hp-version collocation approach, Appl. Numer. Math., 161, 111-136 (2021) · Zbl 1471.65222
[14] Young, A., The application of approximate product-integration to the numerical solution of integral equations, Proc. R. Soc. Lond. Ser. A, 224, 561-573 (1954) · Zbl 0055.35803
[15] Weiss, R.; Anderssen, R. S., A product integration method for a class of singular first kind Volterra equations, Numer. Math., 18, 442-456 (1972) · Zbl 0228.65086
[16] Weiss, R., Product integration for the generalized Abel equation, Math. Comp., 26, 177-190 (1972) · Zbl 0257.45015
[17] Eggermont, P. P.B., A new analysis of the trapezoidal-discretization method for the numerical solution of Abel-type integral equations, J. Integral Equ., 3, 317-332 (1981) · Zbl 0469.65093
[18] Cameron, R. F.; McKee, S., The analysis of product integration methods for Abel’s equation using discrete fractional differentiation, IMA J. Numer. Anal., 5, 339-353 (1985) · Zbl 0579.65138
[19] Capobianco, M. R., A method for the numerical resolution of Abel-type integral equations of the first kind, J. Comput. Appl. Math., 23, 281-304 (1988) · Zbl 0655.65143
[20] Capobianco, M. R., A new proof for the convergence of the trigonometric method for the Abel integral equations of the first kind, J. Comput. Appl. Math., 30, 247-250 (1990) · Zbl 0707.65098
[21] Shen, J.; Tang, T.; Wang, L. L., Spectral Methods: Algorithms, Analysis and Applications (2011), Springer: Springer New York · Zbl 1227.65117
[22] Chawla, M. M.; Kumar, S., Chebyshev series method for the approximate solution of Volterra integral equations with singular kernels, J. Math. Phys. Sci., 12, 473-481 (1978) · Zbl 0385.65059
[23] Kumar, S., A recurrence relation for solution of singular Volterra integral equations using Chebyshev polynomials, BIT, 21, 123-125 (1981) · Zbl 0455.65087
[24] Sadri, K.; Amini, A.; Cheng, C., A new operational method to solve Abel’s and generalized Abel’s integral equations, Appl. Math. Comput., 317, 49-67 (2018) · Zbl 1426.65218
[25] Pandey, R. K.; Sharma, S.; Kumar, K., Collocation method for generalized Abel’s integral equations, J. Comput. Appl. Math., 302, 118-128 (2016) · Zbl 1416.65547
[26] Shiri, B.; Baleanu, D., A general fractional pollution model for lakes, Commun. Appl. Math. Comput., 4, 1105-1130 (2022) · Zbl 1513.34331
[27] Dadkhah Khiabani, E.; Ghaffarzadeh, H.; Shiri, B.; Katebi, J., Spline collocation methods for seismic analysis of multiple degree of freedom systems with visco-elastic dampers using fractional models, J. Vib. Control, 26, 1445-1462 (2020)
[28] Shiri, B.; Wu, G. C.; Baleanu, D., Terminal value problems for the nonlinear systems of fractional differential equations, Appl. Numer. Math., 170, 162-178 (2021) · Zbl 1482.65109
[29] Yang, G.; Shiri, B.; Kong, H.; Wu, G. C., Intermediate value problems for fractional differential equations, Comput. Appl. Math., 40 (2021), 195(20 pages) · Zbl 1476.34040
[30] Baleanu, D.; Shiri, B., Nonlinear higher order fractional terminal value problems, AIMS Math., 7, 7489-7506 (2022)
[31] Baleanu, D.; Shiri, B., Generalized fractional differential equations for past dynamic, AIMS Math., 7, 14394-14418 (2022)
[32] Atkinson, K. E., An existence theorem for Abel integral equations, SIAM J. Math. Anal., 5, 729-736 (1974) · Zbl 0304.45003
[33] Hemmi, M. A.; Melkonian, S., Convergence of psi-series solutions of nonlinear ordinary differential equations, Canad. Appl. Math. Q., 3, 43-88 (1995) · Zbl 0835.34010
[34] Wang, T. K.; Liu, Z. F.; Zhang, Z. Y., The modified composite Gauss type rules for singular integrals using Puiseux expansions, Math. Comput., 86, 345-373 (2017) · Zbl 1351.65018
[35] Wang, T. K.; Qin, M.; Lian, H., The asymptotic approximations to linear weakly singular Volterra integral equations via Laplace transform, Numer. Algorithms, 85, 683-711 (2020) · Zbl 1462.65226
[36] Wang, T. K.; Qin, M.; Zhang, Z. Y., The Puiseux expansion and numerical integration to nonlinear weakly singular Volterra integral equations of the second kind, J. Sci. Comput., 82, 64 (2020), (28 pages) · Zbl 1437.65248
[37] Lü, T.; Huang, J., High Accuracy Methods for Integral Equations (2013), Science Press: Science Press Beijing, (in Chinese)
[38] Liu, Y. P.; Lü, T., Mechanical quadrature methods and their extrapolation for solving first kind Abel integral equations, J. Comput. Appl. Math., 201, 300-313 (2007) · Zbl 1113.65123
[39] Ang, D. D.; Gorenflo, R.; Hai, D. D., Regularization of a generalized Abel integral equation, Appl. Anal., 45, 321-332 (1992) · Zbl 0726.65154
[40] Wang, P.; Zheng, K., Regularization of Abel’s equation of first kind, Integral Transforms Spec. Funct., 10, 131-140 (2000) · Zbl 0977.65123
[41] Ammari, A.; Karoui, A., Stable inversion of the Abel integral equation of the first kind by means of orthogonal polynomials, Inverse Problems, 26, Article 105005 pp. (2010), (28 pages) · Zbl 1200.47017
[42] Ammari, A.; Karoui, A., A Jacobi-Legendre polynomial-based method for the stable solution of a deconvolution problem of the Abel integral equation type, Inverse Problems, 28, Article 055011 pp. (2012), (22 pages) · Zbl 1247.78017
[43] Plato, R., Fractional multistep methods for weakly singular Volterra integral equations of the first kind with perturbed data, Numer. Funct. Anal. Optim., 26, 249-269 (2005) · Zbl 1079.65137
[44] Plato, R., The regularizing properties of the composite trapezoidal method for weakly singular Volterra integral equations of the first kind, Adv. Comput. Math., 36, 331-351 (2012) · Zbl 1245.65187
[45] Plato, R., The product midpoint rule for Abel-type integral equations of the first kind with perturbed data, (Hofmann, B.; Leitão, A.; Zubelli, J. P., New Trends in Parameter Identification for Mathematical Models (2018), Springer International Publishing: Springer International Publishing Cham), 195-225 · Zbl 1404.65338
[46] Brezinski, C.; Van Iseghem, J., A taste of Padé approximation, Acta Numer., 4, 53-103 (1995) · Zbl 0827.41010
[47] Li, J. L.; Wang, T. K.; Hao, Y. H., The series expansions and Gauss-Legendre rule for computing the arbitrary derivatives of the beta type functions, Electron. Trans. Numer. Anal., 52, 203-213 (2020) · Zbl 07192773
[48] Mason, J. C.; Handscomb, D., Chebyshev Polynomials (2003), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton · Zbl 1015.33001
[49] Li, C. P.; Zeng, F. R.; Liu, F. W., Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl. Anal., 15, 383-406 (2012) · Zbl 1276.26016
[50] Gautschi, W., Norm estimates for inverses of Vandermonde matrices, Numer. Math., 23, 337-347 (1975) · Zbl 0304.65031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.