×

General diffusion processes as limit of time-space Markov chains. (English) Zbl 1530.60067

Summary: We prove the convergence of the law of grid-valued random walks, which can be seen as time-space Markov chains, to the law of a general diffusion process. This includes processes with sticky features, reflecting or absorbing boundaries and skew behavior. We prove that the convergence occurs at any rate strictly inferior to \((1 / 4) \wedge(1 / \mathit{p})\) in terms of the maximum cell size of the grid, for any \(p\)-Wasserstein distance. We also show that it is possible to achieve any rate strictly inferior to \((1 / 2) \wedge(2 / \mathit{p})\) if the grid is adapted to the speed measure of the diffusion, which is optimal for \(\mathit{p} \leq 4\). This result allows us to set up asymptotically optimal approximation schemes for general diffusion processes. Last, we experiment numerically on diffusions that exhibit various features.

MSC:

60J60 Diffusion processes
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60G50 Sums of independent random variables; random walks

References:

[1] ALFONSI, A. (2005). On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 355-384. Digital Object Identifier: 10.1163/156939605777438569 Google Scholar: Lookup Link MathSciNet: MR2186814 · Zbl 1100.65007 · doi:10.1163/156939605777438569
[2] ALILI, L. and AYLWIN, A. (2019). On the semi-group of a scaled skew Bessel process. Statist. Probab. Lett. 145 96-102. Digital Object Identifier: 10.1016/j.spl.2018.08.014 Google Scholar: Lookup Link MathSciNet: MR3873894 · Zbl 1407.60104 · doi:10.1016/j.spl.2018.08.014
[3] Amir, M. (1991). Sticky Brownian motion as the strong limit of a sequence of random walks. Stochastic Process. Appl. 39 221-237. Digital Object Identifier: 10.1016/0304-4149(91)90080-V Google Scholar: Lookup Link MathSciNet: MR1136247 · Zbl 0744.60097 · doi:10.1016/0304-4149(91)90080-V
[4] ANAGNOSTAKIS, A. (2022). Functional convergence to the local time of a sticky diffusion. ArXiV preprint. Available at arXiv:2202.03698.
[5] ANKIRCHNER, S., KRUSE, T. and URUSOV, M. (2020). A functional limit theorem for coin tossing Markov chains. Ann. Inst. Henri Poincaré Probab. Stat. 56 2996-3019. Digital Object Identifier: 10.1214/20-AIHP1066 Google Scholar: Lookup Link MathSciNet: MR4164863 · Zbl 1478.60107 · doi:10.1214/20-AIHP1066
[6] ANKIRCHNER, S., KRUSE, T. and URUSOV, M. (2021). Wasserstein convergence rates for random bit approximations of continuous Markov processes. J. Math. Anal. Appl. 493 Paper No. 124543. Digital Object Identifier: 10.1016/j.jmaa.2020.124543 Google Scholar: Lookup Link MathSciNet: MR4144292 · Zbl 1466.60145 · doi:10.1016/j.jmaa.2020.124543
[7] BASS, R. F. (2014). A stochastic differential equation with a sticky point. Electron. J. Probab. 19 no. 32. Digital Object Identifier: 10.1214/EJP.v19-2350 Google Scholar: Lookup Link MathSciNet: MR3183576 · Zbl 1291.60113 · doi:10.1214/EJP.v19-2350
[8] BORODIN, A. N. and SALMINEN, P. (1996). Handbook of Brownian Motion—Facts and Formulae. Probability and Its Applications. Birkhäuser, Basel. Digital Object Identifier: 10.1007/978-3-0348-7652-0 Google Scholar: Lookup Link MathSciNet: MR1477407 · Zbl 0859.60001 · doi:10.1007/978-3-0348-7652-0
[9] Brezis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York. MathSciNet: MR2759829 · Zbl 1220.46002
[10] CHUNG, K. L. and HUNT, G. A. (1949). On the zeros of \(\sum_1^{\mathit{n}} \pm 1\). Ann. of Math. (2) 50 385-400. Digital Object Identifier: 10.2307/1969462 Google Scholar: Lookup Link MathSciNet: MR0029488 · Zbl 0032.41701 · doi:10.2307/1969462
[11] COX, J. C., INGERSOLL, J. E. JR. and ROSS, S. A. (1985). A theory of the term structure of interest rates. Econometrica 53 385-407. Digital Object Identifier: 10.2307/1911242 Google Scholar: Lookup Link MathSciNet: MR0785475 · Zbl 1274.91447 · doi:10.2307/1911242
[12] DONSKER, M. D. (1951). An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc. 6 12. MathSciNet: MR0040613 · Zbl 0042.37602
[13] EBERLE, A. and ZIMMER, R. (2019). Sticky couplings of multidimensional diffusions with different drifts. Ann. Inst. Henri Poincaré Probab. Stat. 55 2370-2394. Digital Object Identifier: 10.1214/18-AIHP951 Google Scholar: Lookup Link MathSciNet: MR4029157 · Zbl 1434.60213 · doi:10.1214/18-AIHP951
[14] ENGELBERT, H.-J. and PESKIR, G. (2014). Stochastic differential equations for sticky Brownian motion. Stochastics 86 993-1021. Digital Object Identifier: 10.1080/17442508.2014.899600 Google Scholar: Lookup Link MathSciNet: MR3271518 · Zbl 1337.60120 · doi:10.1080/17442508.2014.899600
[15] ÉTORÉ, P. and LEJAY, A. (2007). A Donsker theorem to simulate one-dimensional processes with measurable coefficients. ESAIM Probab. Stat. 11 301-326. Digital Object Identifier: 10.1051/ps:2007021 Google Scholar: Lookup Link MathSciNet: MR2339295 · Zbl 1181.60123 · doi:10.1051/ps:2007021
[16] FELLER, W. (1951). Two singular diffusion problems. Ann. of Math. (2) 54 173-182. Digital Object Identifier: 10.2307/1969318 Google Scholar: Lookup Link MathSciNet: MR0054814 · Zbl 0045.04901 · doi:10.2307/1969318
[17] FELLER, W. (1952). The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math. (2) 55 468-519. Digital Object Identifier: 10.2307/1969644 Google Scholar: Lookup Link MathSciNet: MR0047886 · Zbl 0047.09303 · doi:10.2307/1969644
[18] FELLER, W. (1957). Generalized second order differential operators and their lateral conditions. Illinois J. Math. 1 459-504. MathSciNet: MR0092046 · Zbl 0077.29102
[19] FERRER-ADMETLLA, A., LEUENBERGER, C., JENSEN, J. and WEGMANN, D. (2016). An approximate Markov model for the Wright-Fisher diffusion and its application to time series data. Genetics 203 04.
[20] FRIKHA, N. (2018). On the weak approximation of a skew diffusion by an Euler-type scheme. Bernoulli 24 1653-1691. Digital Object Identifier: 10.3150/16-BEJ909 Google Scholar: Lookup Link MathSciNet: MR3757512 · Zbl 1429.60052 · doi:10.3150/16-BEJ909
[21] HAJRI, H., CAGLAR, M. and ARNAUDON, M. (2017). Application of stochastic flows to the sticky Brownian motion equation. Electron. Commun. Probab. 22 Paper No. 3. Digital Object Identifier: 10.1214/16-ECP37 Google Scholar: Lookup Link MathSciNet: MR3607798 · Zbl 1357.60083 · doi:10.1214/16-ECP37
[22] HUTZENTHALER, M. and JENTZEN, A. (2015). Numerical Approximations of Stochastic Differential Equations with Non-globally Lipschitz Continuous Coefficients. Mem. Am. Math. Soc. 1112. Amer. Math. Soc., Providence, RI. · Zbl 1330.60084
[23] ITÔ, K. (2006). Essentials of Stochastic Processes. Translations of Mathematical Monographs 231. Amer. Math. Soc., Providence, RI. Digital Object Identifier: 10.1090/mmono/231 Google Scholar: Lookup Link MathSciNet: MR2239081 · doi:10.1090/mmono/231
[24] LEJAY, A. (2004). Monte Carlo methods for fissured porous media: A gridless approach. Monte Carlo Methods Appl. 10 385-392. Digital Object Identifier: 10.1515/mcma.2004.10.3-4.385 Google Scholar: Lookup Link MathSciNet: MR2105066 · Zbl 1109.76378 · doi:10.1515/mcma.2004.10.3-4.385
[25] LEJAY, A. (2006). On the constructions of the skew Brownian motion. Probab. Surv. 3 413-466. Digital Object Identifier: 10.1214/154957807000000013 Google Scholar: Lookup Link MathSciNet: MR2280299 · Zbl 1189.60145 · doi:10.1214/154957807000000013
[26] MEIER, C., LI, L. and ZHANG, G. (2021). Markov chain approximation of one-dimensional sticky diffusions. Adv. in Appl. Probab. 53 335-369. Digital Object Identifier: 10.1017/apr.2020.65 Google Scholar: Lookup Link MathSciNet: MR4280450 · Zbl 1480.65027 · doi:10.1017/apr.2020.65
[27] NIE, Y. and LINETSKY, V. (2020). Sticky reflecting Ornstein-Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound. Stoch. Models 36 1-19. Digital Object Identifier: 10.1080/15326349.2019.1630287 Google Scholar: Lookup Link MathSciNet: MR4067885 · Zbl 1434.60217 · doi:10.1080/15326349.2019.1630287
[28] PISKORSKI, T. and WESTERFIELD, M. M. (2016). Optimal dynamic contracts with moral hazard and costly monitoring. J. Econom. Theory 166 242-281. Digital Object Identifier: 10.1016/j.jet.2016.08.003 Google Scholar: Lookup Link MathSciNet: MR3566443 · Zbl 1371.91122 · doi:10.1016/j.jet.2016.08.003
[29] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin. Digital Object Identifier: 10.1007/978-3-662-06400-9 Google Scholar: Lookup Link MathSciNet: MR1725357 · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9
[30] ROGERS, L. C. G. and WILLIAMS, D. (2000). Diffusions, Markov Processes, and Martingales. Vol. 2. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge. Digital Object Identifier: 10.1017/CBO9781107590120 Google Scholar: Lookup Link MathSciNet: MR1780932 · Zbl 0977.60005 · doi:10.1017/CBO9781107590120
[31] Villani, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin. Digital Object Identifier: 10.1007/978-3-540-71050-9 Google Scholar: Lookup Link MathSciNet: MR2459454 · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
[32] ZHU, J. Y. (2013). Optimal contracts with shirking. Rev. Econ. Stud. 80 812-839. Digital Object Identifier: 10.1093/restud/rds038 Google Scholar: Lookup Link MathSciNet: MR3054078 · Zbl 1263.91029 · doi:10.1093/restud/rds038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.