×

The Wasserstein distance to the circular law. (English) Zbl 1530.60007

Summary: We investigate the Wasserstein distance between the empirical spectral distribution of non-Hermitian random matrices and the circular law. For Ginibre matrices, we obtain an optimal rate of convergence \({n}^{- 1 / 2}\) in 1-Wasserstein distance. This shows that the expected transport cost of complex eigenvalues to the uniform measure on the unit disk decays faster (due to the repulsive behaviour) compared to that of i.i.d. points, which is known to include a logarithmic factor. For non-Gaussian entry distributions with finite moments, we also show that the rate of convergence nearly attains this optimal rate.

MSC:

60B20 Random matrices (probabilistic aspects)
41A25 Rate of convergence, degree of approximation
49Q22 Optimal transportation
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

Software:

Wasserstein GAN

References:

[1] M. Ajtai, J. Komlós and G. Tusnády. On optimal matchings. Combinatorica 4 (4) (1984) 259-264. Digital Object Identifier: 10.1007/BF02579135 Google Scholar: Lookup Link MathSciNet: MR0779885 · Zbl 0562.60012 · doi:10.1007/BF02579135
[2] J. Alt, L. Erdős and T. Krüger. Spectral radius of random matrices with independent entries. Probab. Math. Phys. 2 (2) (2021) 1-60.
[3] L. Ambrosio, M. Goldman and D. Trevisan. On the quadratic random matching problem in two-dimensional domains. arXiv preprint. Available at arXiv:2110.14372 (2021). Digital Object Identifier: 10.1214/22-ejp784 Google Scholar: Lookup Link MathSciNet: MR4416128 · doi:10.1214/22-ejp784
[4] L. Ambrosio, F. Stra and D. Trevisan. A PDE approach to a 2-dimensional matching problem. Probab. Theory Related Fields 173 (1) (2019) 433-477. Digital Object Identifier: 10.1007/s00440-018-0837-x Google Scholar: Lookup Link MathSciNet: MR3916111 · Zbl 1480.60017 · doi:10.1007/s00440-018-0837-x
[5] M. Arjovsky, S. Chintala and L. Bottou. Wasserstein generative adversarial networks. In International Conference on Machine Learning 214-223, 2017. PMLR.
[6] F. Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput. Surv. 23 (3) (1991) 345-405.
[7] J. Backhoff, D. Bartl, M. Beiglböck and J. Wiesel. Estimating processes in adapted Wasserstein distance. arXiv preprint. Available at arXiv:2002.07261 (2020). Digital Object Identifier: 10.1214/21-aap1687 Google Scholar: Lookup Link MathSciNet: MR4386535 · doi:10.1214/21-aap1687
[8] Z. D. Bai. Circular law. Ann. Probab. 25 (1) (1997) 494-529. Digital Object Identifier: 10.1214/aop/1024404298 Google Scholar: Lookup Link MathSciNet: MR1428519 · Zbl 0871.62018 · doi:10.1214/aop/1024404298
[9] Z. D. Bai and Y. Q. Yin. Limiting behavior of the norm of products of random matrices and two problems of Geman-Hwang. Probab. Theory Related Fields 73 (4) (1986) 555-569. Digital Object Identifier: 10.1007/BF00324852 Google Scholar: Lookup Link MathSciNet: MR0863545 · Zbl 0586.60021 · doi:10.1007/BF00324852
[10] D. Bakry, I. Gentil and M. Ledoux. Analysis and Geometry of Markov Diffusion Operators, 103. Springer, Berlin, 2014. Digital Object Identifier: 10.1007/978-3-319-00227-9 Google Scholar: Lookup Link MathSciNet: MR3155209 · Zbl 1376.60002 · doi:10.1007/978-3-319-00227-9
[11] S. Bobkov and M. Ledoux. A simple Fourier analytic proof of the AKT optimal matching theorem. arXiv preprint. Available at arXiv:1909.06193 (2019). Digital Object Identifier: 10.1214/20-aap1656 Google Scholar: Lookup Link MathSciNet: MR4350968 · doi:10.1214/20-aap1656
[12] B. Bollobás and O. Riordan. Percolation on random Johnson-Mehl tessellations and related models. Probab. Theory Related Fields 140 (3) (2008) 319-343. Digital Object Identifier: 10.1007/s00440-007-0066-1 Google Scholar: Lookup Link MathSciNet: MR2365477 · Zbl 1135.60057 · doi:10.1007/s00440-007-0066-1
[13] B. Borda. Empirical measures and random walks on compact spaces in the quadratic Wasserstein metric. arXiv preprint. Available at arXiv:2110.00295 (2021).
[14] C. Bordenave and D. Chafaï. Around the circular law. Probab. Surv. 9 (2012) 1-89. Digital Object Identifier: 10.1214/11-PS183 Google Scholar: Lookup Link MathSciNet: MR2908617 · Zbl 1243.15022 · doi:10.1214/11-PS183
[15] D. P. Bourne, B. Schmitzer and B. Wirth. Semi-discrete unbalanced optimal transport and quantization. arXiv preprint. Available at arXiv:1808.01962 (2018).
[16] S. Caracciolo, C. Lucibello, G. Parisi and G. Sicuro. Scaling hypothesis for the Euclidean bipartite matching problem. Phys. Rev. E 90 (1) (2014) 012118. Digital Object Identifier: 10.1103/PhysRevE.91.062125 Google Scholar: Lookup Link MathSciNet: MR3491356 · doi:10.1103/PhysRevE.91.062125
[17] S. Caracciolo and G. Sicuro. One-dimensional Euclidean matching problem: Exact solutions, correlation functions, and universality. Phys. Rev. E 90 (4) (2014) 042112.
[18] D. Chafaï, A. Hardy and M. Maïda. Concentration for Coulomb gases and Coulomb transport inequalities. J. Funct. Anal. 275 (6) (2018) 1447-1483. Digital Object Identifier: 10.1016/j.jfa.2018.06.004 Google Scholar: Lookup Link MathSciNet: MR3820329 · Zbl 1407.82045 · doi:10.1016/j.jfa.2018.06.004
[19] S. Dallaporta. Eigenvalue variance bounds for Wigner and covariance random matrices. Random Matrices Theory Appl. 1 (03) (2012) 1250007. Digital Object Identifier: 10.1142/S2010326312500074 Google Scholar: Lookup Link MathSciNet: MR2967966 · Zbl 1252.60011 · doi:10.1142/S2010326312500074
[20] E. del Barrio and J.-M. Loubes. Central limit theorems for empirical transportation cost in general dimension. Ann. Probab. 47 (2) (2019) 926-951. Digital Object Identifier: 10.1214/18-AOP1275 Google Scholar: Lookup Link MathSciNet: MR3916938 · Zbl 1466.60042 · doi:10.1214/18-AOP1275
[21] S. Dereich, M. Scheutzow and R. Schottstedt. Constructive quantization: Approximation by empirical measures. In Annals of the IHP Probability and Statistics 1183-1203, 49, 2013. Digital Object Identifier: 10.1214/12-AIHP489 Google Scholar: Lookup Link MathSciNet: MR3127919 · Zbl 1283.60063 · doi:10.1214/12-AIHP489
[22] V. Dobrić and J. E. Yukich. Asymptotics for transportation cost in high dimensions. J. Theor. Probab. 8 (1) (1995) 97-118. Digital Object Identifier: 10.1007/BF02213456 Google Scholar: Lookup Link MathSciNet: MR1308672 · Zbl 0811.60022 · doi:10.1007/BF02213456
[23] P. J. Forrester. Log-Gases and Random Matrices (LMS-34). Princeton University Press, Princeton, 2010. Digital Object Identifier: 10.1515/9781400835416 Google Scholar: Lookup Link MathSciNet: MR2641363 · doi:10.1515/9781400835416
[24] N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 (3) (2015) 707-738. Digital Object Identifier: 10.1007/s00440-014-0583-7 Google Scholar: Lookup Link MathSciNet: MR3383341 · Zbl 1325.60042 · doi:10.1007/s00440-014-0583-7
[25] Y. V. Fyodorov, B. A. Khoruzhenko and H.-J. Sommers. Almost-Hermitian random matrices: Eigenvalue density in the complex plane. Phys. Lett. A 226 (1-2) (1997) 46-52. Digital Object Identifier: 10.1016/S0375-9601(96)00904-8 Google Scholar: Lookup Link MathSciNet: MR1431718 · Zbl 0962.82501 · doi:10.1016/S0375-9601(96)00904-8
[26] S. Geman. The spectral radius of large random matrices. Ann. Probab. 14 (4) (1986) 1318-1328. · Zbl 0605.60037
[27] J. Ginibre. Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6 (1965) 440-449. Digital Object Identifier: 10.1063/1.1704292 Google Scholar: Lookup Link MathSciNet: MR0173726 · Zbl 0127.39304 · doi:10.1063/1.1704292
[28] V. L. Girko. The circular law. Teor. Veroyatn. Primen. 29 (4) (1984) 669-679. MathSciNet: MR0773436 · Zbl 0565.60034
[29] M. Goldman, M. Huesmann and F. Otto. A large-scale regularity theory for the Monge-Ampere equation with rough data and application to the optimal matching problem. arXiv preprint. Available at arXiv:1808.09250 (2018).
[30] F. Götze and J. Jalowy. Rate of convergence to the Circular Law via smoothing inequalities for log-potentials. Random Matrices: Theory and Applications (2020), 2150026. Digital Object Identifier: 10.1142/S201032632150026X Google Scholar: Lookup Link MathSciNet: MR4302281 · Zbl 1479.60004 · doi:10.1142/S201032632150026X
[31] F. Götze, A. Naumov, A. Tikhomirov and D. Timushev. On the local semicircular law for Wigner ensembles. Bernoulli 24 (3) (2018) 2358-2400. Digital Object Identifier: 10.3150/17-BEJ931 Google Scholar: Lookup Link MathSciNet: MR3757532 · Zbl 1429.60010 · doi:10.3150/17-BEJ931
[32] F. Götze and A. Tikhomirov. The circular law for random matrices. Ann. Probab. 38 (4) (2010) 1444-1491. Digital Object Identifier: 10.1214/09-AOP522 Google Scholar: Lookup Link MathSciNet: MR2663633 · Zbl 1203.60010 · doi:10.1214/09-AOP522
[33] F. Götze and A. Tikhomirov. Optimal bounds for convergence of expected spectral distributions to the semi-circular law. Probab. Theory Related Fields 165 (1-2) (2016) 163-233. Digital Object Identifier: 10.1007/s00440-015-0629-5 Google Scholar: Lookup Link MathSciNet: MR3500270 · Zbl 1338.60014 · doi:10.1007/s00440-015-0629-5
[34] A. Gusakova, Z. Kabluchko and C. Thäle. The \(β\)-Delaunay tessellation I: Description of the model and geometry of typical cells. Advances in Applied Probability (2022), (to appear). Digital Object Identifier: 10.1017/apr.2022.6 Google Scholar: Lookup Link MathSciNet: MR4505686 · Zbl 1503.60014 · doi:10.1017/apr.2022.6
[35] J. Gustavsson. Gaussian fluctuations of eigenvalues in the GUE. In Annales de l’IHP Probabilités et statistiques 151-178, 41, 2005. Digital Object Identifier: 10.1016/j.anihpb.2004.04.002 Google Scholar: Lookup Link MathSciNet: MR2124079 · Zbl 1073.60020 · doi:10.1016/j.anihpb.2004.04.002
[36] C. Hoffman, A. E. Holroyd and Y. Peres. A stable marriage of Poisson and Lebesgue. Ann. Probab. 34 (4) (2006) 1241-1272. Digital Object Identifier: 10.1214/009117906000000098 Google Scholar: Lookup Link MathSciNet: MR2257646 · Zbl 1111.60008 · doi:10.1214/009117906000000098
[37] M. Huesmann, F. Mattesini and D. Trevisan. Wasserstein Asymptotics for the Empirical Measure of Fractional Brownian Motion on a Flat Torus. arXiv preprint. Available at arXiv:2205.01025 (2022). Digital Object Identifier: 10.1016/j.spa.2022.09.008 Google Scholar: Lookup Link MathSciNet: MR4499874 · Zbl 1508.60050 · doi:10.1016/j.spa.2022.09.008
[38] M. Huesmann and K.-T. Sturm. Optimal transport from Lebesgue to Poisson. Ann. Probab. 41 (4) (2013) 2426-2478. Digital Object Identifier: 10.1214/12-AOP814 Google Scholar: Lookup Link MathSciNet: MR3112922 · Zbl 1279.60024 · doi:10.1214/12-AOP814
[39] J. Jalowy. Rate of convergence for products of independent non-Hermitian random matrices. Electron. J. Probab. 26 (2021) 1-24. Digital Object Identifier: 10.1214/21-ejp625 Google Scholar: Lookup Link MathSciNet: MR4254801 · Zbl 1468.60010 · doi:10.1214/21-ejp625
[40] G. Lambert. Maximum of the characteristic polynomial of the Ginibre ensemble. Comm. Math. Phys. 378 (2) (2020) 943-985. Digital Object Identifier: 10.1007/s00220-020-03813-1 Google Scholar: Lookup Link MathSciNet: MR4134939 · Zbl 1446.82031 · doi:10.1007/s00220-020-03813-1
[41] G. Last and H. Thorisson. Transportation of diffuse random measures on \(\operatorname{R}^{\mathit{d}} \). arXiv preprint. Available at arXiv:2112.13053 (2021).
[42] C. Lautensack and S. Zuyev. Random Laguerre tessellations. Adv. in Appl. Probab. 40 (3) (2008) 630-650. Digital Object Identifier: 10.1239/aap/1222868179 Google Scholar: Lookup Link MathSciNet: MR2454026 · Zbl 1154.60011 · doi:10.1239/aap/1222868179
[43] T. Leblé. Local microscopic behavior for 2D Coulomb gases. Probab. Theory Related Fields 169 (3) (2017) 931-976. Digital Object Identifier: 10.1007/s00440-016-0744-y Google Scholar: Lookup Link MathSciNet: MR3719060 · Zbl 1379.82004 · doi:10.1007/s00440-016-0744-y
[44] M. Ledoux. On optimal matching of Gaussian samples. J. Math. Sci. 238 (4) (2019) 495-522. MathSciNet: MR3723584 · Zbl 1478.60080
[45] E. S. Meckes and M. W. Meckes. Concentration and convergence rates for spectral measures of random matrices. Probab. Theory Related Fields 156 (1-2) (2013) 145-164. Digital Object Identifier: 10.1007/s00440-012-0423-6 Google Scholar: Lookup Link MathSciNet: MR3055255 · Zbl 1291.60015 · doi:10.1007/s00440-012-0423-6
[46] E. S. Meckes and M. W. Meckes. A rate of convergence for the circular law for the complex Ginibre ensemble. Ann. Fac. Sci. Toulouse Math. (6) 24 (1) (2015) 93-117. Digital Object Identifier: 10.5802/afst.1443 Google Scholar: Lookup Link MathSciNet: MR3325952 · Zbl 1316.60018 · doi:10.5802/afst.1443
[47] A. Mehta. Online matching and ad allocation (2013). Digital Object Identifier: 10.1561/0400000057 Google Scholar: Lookup Link MathSciNet: MR3122104 · Zbl 1278.68018 · doi:10.1561/0400000057
[48] M. L. Mehta. Random Matrices. Elsevier, Amsterdam, 2004. MathSciNet: MR2129906 · Zbl 1107.15019
[49] F. Nazarov, M. Sodin and A. Volberg. Transportation to random zeroes by the gradient flow. Geom. Funct. Anal. 17 (3) (2007) 887-935. Digital Object Identifier: 10.1007/s00039-007-0613-z Google Scholar: Lookup Link MathSciNet: MR2346279 · Zbl 1153.60027 · doi:10.1007/s00039-007-0613-z
[50] S. O’Rourke and N. Williams. Partial linear eigenvalue statistics for non-Hermitian random matrices. arXiv preprint. Available at arXiv:1912.08856 (2019).
[51] R. Peyre. Comparison between W2 distance and H-1 norm, and localization of Wasserstein distance. ESAIM Control Optim. Calc. Var. 24 (4) (2018) 1489-1501. Digital Object Identifier: 10.1051/cocv/2017050 Google Scholar: Lookup Link MathSciNet: MR3922440 · Zbl 1415.49031 · doi:10.1051/cocv/2017050
[52] M. Prod’homme. Contributions to the optimal transport problem and its regularity. Theses, Université Paul Sabatier - Toulouse III, 2021. Available at https://tel.archives-ouvertes.fr/tel-03419872.
[53] K. Rajan and L. F. Abbott. Eigenvalue spectra of random matrices for neural networks. Phys. Rev. Lett. 97 (18) (2006) 188104.
[54] E. Sandier and S. Serfaty. 2D Coulomb gases and the renormalized energy. Ann. Probab. 43 (4) (2015) 2026-2083. Digital Object Identifier: 10.1214/14-AOP927 Google Scholar: Lookup Link MathSciNet: MR3353821 · Zbl 1328.82006 · doi:10.1214/14-AOP927
[55] G. Szegö. Über eine Eigenschaft der Exponentialreihe. Sitzungsber. Berl. Math. Ges 23 (1924) 50-64. · JFM 50.0257.01
[56] M. Talagrand. The transportation cost from the uniform measure to the empirical measure in dimension ≥ 3. Ann. Probab. 22 (2) (1994) 919-959. MathSciNet: MR1288137 · Zbl 0809.60015
[57] T. Tao and V. Vu. Random matrices: The circular law. Commun. Contemp. Math. 10 (02) (2008) 261-307. · Zbl 1156.15010
[58] T. Tao and V. Vu. Random matrices: Universality of ESDs and the circular law. Ann. Probab. 38 (1) (2010) 2023-2065. With an appendix by Manjunath Krishnapur. · Zbl 1203.15025
[59] T. Tao and V. Vu. Random matrices: Universality of local spectral statistics of non-Hermitian matrices. Ann. Probab. 43 (2) (2015) 782-874. Digital Object Identifier: 10.1214/13-AOP876 Google Scholar: Lookup Link MathSciNet: MR3306005 zbMATH: 1316.15042 · Zbl 1316.15042 · doi:10.1214/13-AOP876
[60] F.-Y. Wang. Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes. J. Funct. Anal. 280 (11) (2021) 108998. Digital Object Identifier: 10.1016/j.jfa.2021.108998 Google Scholar: Lookup Link MathSciNet: MR4232671 · Zbl 1482.60015 · doi:10.1016/j.jfa.2021.108998
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.