×

On non almost-fibered knots. (English) Zbl 1530.57003

Thin position for 3-manifolds was defined by M. Scharlemann and A. Thompson [Contemp. Math. 164, 231–238 (1994; Zbl 0818.57013)] by adapting the concept of thin position for knots in \(S^3\) developed by D. Gabai. F. Manjarrez-Gutiérrez [Algebr. Geom. Topol. 9, No. 1, 429–454 (2009; Zbl 1171.57005)] developed curcular width and circular thin position of the knot exterior based on the idea of thin position for 3-manifolds. A fibered knot means that its knot exterior has a circular thin position with one and only one incompressible level surface. An almost fibered knot means that its knot exterior has a circular thin position where there is only one weakly incompressible Seifert surface and one incompressible Seifert surface. F. Manjarrez-Gutiérrez et al. in [Pac. J. Math. 275, No. 2, 361–407 (2015; Zbl 1321.57011)] proved that if a non-fibered knot is free genus one then it is an almost-fibered knot. This implies that any knot has a circular decomposition with only one thick surface. Examples of non almost-fibered knots make the other direction of this topic.
In this paper, the authors explicitly construct an infinite family of genus one hyperbolic knots which are not almost-fibered. For this construction, they ideally consider four non-isotopic genus one Seifert surfaces; two of these are thin surfaces of genus one and the other two are thick surfaces of genus two of a decomposition of the knot exterior. They prove that the example they construct cannot have a decomposition with only one 1-handle and one 2-handle. Therefore, they are not almost-fibered.

MSC:

57K10 Knot theory
57M12 Low-dimensional topology of special (e.g., branched) coverings

References:

[1] G. Burde, H. Zieschang, Neuwirth Knoten und Flachenabbildungen, Abh. Math. Sem. Univ. Hamburg 31 (1967), 239-246. · Zbl 0171.22402
[2] H. Goda, On handle number of Seifert surfaces in S 3 , Osaka J. Math. 30 (1993), 63-80. · Zbl 0814.57004
[3] F. Manjarrez-Gutiérrez, Circular thin position for knots in S 3 , Algebr. Geom. Topol. 9 (2009), 429-454. http://dx.doi.org/10.1016/j.topol.2012.10.001 · Zbl 1171.57005 · doi:10.1016/j.topol.2012.10.001
[4] F. Manjarrez-Gutiérrez, Additivity of handle number and Morse-Novikov number of a-small knots. Topology Appl. 160 (2013), no. 1, 117-125. · Zbl 1258.57003
[5] http://dx.doi.org/10.1016/j.topol.2012.10.001 · Zbl 1258.57003 · doi:10.1016/j.topol.2012.10.001
[6] F. Manjarrez-Gutiérrez, V. Núñez, E. Ramírez-Losada, Circular handle decom-positions of free genus one knots, Pacific J. Math. 275 (2015), 361-407. http://dx.doi.org/10.2140/pjm.2015.275.361 · Zbl 1321.57011 · doi:10.2140/pjm.2015.275.361
[7] D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983), 445-503. http://dx.doi.org/10.4310/jdg/1214437784 · Zbl 0533.57013 · doi:10.4310/jdg/1214437784
[8] J. Milnor, Lectures on the h-cobordism theorem, Princeton University Press. Princeton, N.J., 1963. http://dx.doi.org/10.1515/9781400878055 · Zbl 0108.10401 · doi:10.1515/9781400878055
[9] M. Scharlemann, A. Thompson, Thin position for 3-manifolds, Contemp. Math., 164, AMS, (1994), 231-238. http://dx.doi.org/10.1090/conm/164/01596 · Zbl 0818.57013 · doi:10.1090/conm/164/01596
[10] M. Scharlemann, M. Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006), 593-617. http://dx.doi.org/10.2140/gt.2006.10.593 · Zbl 1128.57022 · doi:10.2140/gt.2006.10.593
[11] J. Schultens, Additivity of tunnel number for small knots, Comment. Math. Helv. 75 (2000), 353-367. https://doi.org/10.1007/s000140050131 · Zbl 0972.57007 · doi:10.1007/s000140050131
[12] L. Valdez-Sánchez, Seifert surfaces for genus one hyperbolic knots in the 3-sphere, Algebr. Geom. Topol. 19 (2019), 2151-2231. http://dx.doi.org/10.2140/agt.2019.19.2151 · Zbl 1431.57019 · doi:10.2140/agt.2019.19.2151
[13] W. Whitten, Isotopy types of knot spanning surfaces, Topology 12 (1973), 373-380. http://dx.doi.org/10.1016/0040-9383(73)90029-3 · Zbl 0269.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.