×

Generalized focal points and local Sturmian theory for linear Hamiltonian systems. (English) Zbl 1530.37089

Summary: In this paper we present a new approach for the study of the oscillation properties of linear differential equations, in particular of linear Hamiltonian systems. We introduce a new notion of a generalized left focal point as well as its multiplicity, which do not depend on the validity of the traditionally assumed Legendre condition. Based on this notion we are able to develop a local (or pointwise) version of the Sturmian separation theorem, which provides a lower bound and an upper bound for the multiplicity of a generalized left focal point for any conjoined basis of the system. We apply this knowledge in several directions, such as (i) in the explanation of the exact role of the Legendre condition in the Sturmian theory, (ii) in the second order optimality conditions for variational problems, (iii) in the analysis of isolated and non-isolated generalized left focal points, and (iv) in the study of the so-called anti-Legendre condition. As a main tool we use the comparative index and its properties. The results are new even for completely controllable linear Hamiltonian systems, including the Sturm-Liouville differential equations of arbitrary even order.

MSC:

37J51 Action-minimizing orbits and measures for finite-dimensional Hamiltonian and Lagrangian systems; variational principles; degree-theoretic methods
37J12 Fixed points and periodic points of finite-dimensional Hamiltonian and Lagrangian systems
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34B24 Sturm-Liouville theory
Full Text: DOI

References:

[1] J. R. Allwright Vinter, Second order conditions for periodic optimal control problems, Control Cybernet., 34, 617-643 (2005) · Zbl 1167.49310
[2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Second Edition, Springer-Verlag, New York, NY, 2003. · Zbl 1026.15004
[3] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Reprint of the 1991 corrected reprint of the 1979 original, Classics in Applied Mathematics, Vol. 56, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. · Zbl 1158.15301
[4] W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin, 1971. · Zbl 0224.34003
[5] O. Došlý, Relative oscillation of linear Hamiltonian differential systems, Math. Nachr., 290, 2234-2246 (2017) · Zbl 1376.34032 · doi:10.1002/mana.201400211
[6] O. Došlý, J. Elyseeva and R. Šimon Hilscher, Symplectic Difference Systems: Oscillation and Spectral Theory, Pathways in Mathematics, Birkhäuser/Springer, Cham, 2019. · Zbl 1425.39001
[7] I. W. R. Dřímalová Kratz Šimon Hilscher, Sturm-Liouville matrix differential systems with singular leading coefficient, Ann. Mat. Pura Appl. (4), 196, 1165-1183 (2017) · Zbl 1392.34021 · doi:10.1007/s10231-016-0611-6
[8] Y. V. Eliseeva, Comparative index for solutions of symplectic difference systems, Differential Equations, 45, 445-459 (2009) · Zbl 1182.39007 · doi:10.1134/S0012266109030148
[9] J. Elyseeva, Comparison theorems for conjoined bases of linear Hamiltonian differential systems and the comparative index, J. Math. Anal. Appl., 444, 1260-1273 (2016) · Zbl 1356.34039 · doi:10.1016/j.jmaa.2016.07.020
[10] J. Elyseeva, Relative oscillation of linear Hamiltonian differential systems without monotonicity, Appl. Math. Lett., 103 (2020), Article 106173, 8 pp. · Zbl 1447.34035
[11] J. Elyseeva, Comparison theorems for conjoined bases of linear Hamiltonian systems without monotonicity, Monatsh. Math., 193, 305-328 (2020) · Zbl 1448.37062 · doi:10.1007/s00605-020-01378-8
[12] J. Elyseeva, Relative oscillation theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter, Math. Nachr., 296, 196-216 (2023) · Zbl 1533.37132 · doi:10.1002/mana.202000434
[13] J. Elyseeva, P. Šepitka and R. Šimon Hilscher, Oscillation numbers for Lagrangian paths and Maslov index, J. Dynam. Differential Equations, (2022). · Zbl 1530.37087
[14] J. P. R. Elyseeva Šepitka Šimon Hilscher, Comparative index and Hörmander index in finite dimension and their connections, Filomat, 37, 5243-5257 (2023)
[15] R. R. C. Fabbri Johnson Núñez, On the Yakubovich frequency theorem for linear non-autonomous control processes, Discrete Contin. Dyn. Syst., 9, 677-704 (2003) · Zbl 1028.37014 · doi:10.3934/dcds.2003.9.677
[16] F. M. Gesztesy Zinchenko, Renormalized oscillation theory for Hamiltonian systems, Adv. Math., 311, 569-597 (2017) · Zbl 1381.34050 · doi:10.1016/j.aim.2017.03.005
[17] P. Howard, Hörmander’s index and oscillation theory, J. Math. Anal. Appl., 500 (2021), Art. 125076, 38 pp. · Zbl 1465.37072
[18] P. Howard, Maslov index and spectral counts for linear Hamiltonian systems on \(\mathbb{R} \), J. Dynam. Differential Equations, (2021).
[19] P. S. B. Howard Jung Kwon, The Maslov index and spectral counts for linear Hamiltonian systems on \([0, 1]\), J. Dynam. Differential Equations, 30, 1703-1729 (2018) · Zbl 1404.37064 · doi:10.1007/s10884-017-9625-z
[20] R. S. C. R. Johnson Novo Núñez Obaya, Nonautonomous linear-quadratic dissipative control processes without uniform null controllability, J. Dynam. Differential Equations, 29, 355-383 (2017) · Zbl 1371.49024 · doi:10.1007/s10884-015-9495-1
[21] W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Akademie Verlag, Berlin, 1995. · Zbl 0842.49001
[22] W. Kratz, Definiteness of quadratic functionals, Analysis (Munich), 23, 163-183 (2003) · Zbl 1070.49014 · doi:10.1524/anly.2003.23.2.163
[23] W. R. Kratz Šimon Hilscher, Rayleigh principle for linear Hamiltonian systems without controllability, ESAIM Control Optim. Calc. Var., 18, 501-519 (2012) · Zbl 1254.34120 · doi:10.1051/cocv/2011104
[24] W. T. Reid, Ordinary Differential Equations, John Wiley & Sons, Inc., New York, 1971. · Zbl 0212.10901
[25] W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York, 1980. · Zbl 0459.34001
[26] P. Šepitka, Theory of Principal Solutions at Infinity for Linear Hamiltonian Systems, Ph.D. thesis, Masaryk University, Brno, 2014. Available online at https://is.muni.cz/th/vqad7/?lang = en.
[27] P. Šepitka, Riccati Matrix Differential Equations and Sturmian Theory for Linear Hamiltonian Systems, Habilitation thesis, Masaryk University, Brno, 2021. Available online at https://www.muni.cz/inet-doc/1696043.
[28] P. R. Šepitka Šimon Hilscher, Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 26, 57-91 (2014) · Zbl 1305.34053 · doi:10.1007/s10884-013-9342-1
[29] P. R. Šepitka Šimon Hilscher, Comparative index and Sturmian theory for linear Hamiltonian systems, J. Differential Equations, 262, 914-944 (2017) · Zbl 1375.34052 · doi:10.1016/j.jde.2016.09.043
[30] P. R. Šepitka Šimon Hilscher, Focal points and principal solutions of linear Hamiltonian systems revisited, J. Differential Equations, 264, 5541-5576 (2018) · Zbl 1394.34061 · doi:10.1016/j.jde.2018.01.016
[31] P. R. Šepitka Šimon Hilscher, Singular Sturmian separation theorems on unbounded intervals for linear Hamiltonian systems, J. Differential Equations, 266, 7481-7524 (2019) · Zbl 1408.37107 · doi:10.1016/j.jde.2018.12.007
[32] P. R. Šepitka Šimon Hilscher, Singular Sturmian comparison theorems for linear Hamiltonian systems, J. Differential Equations, 269, 2920-2955 (2020) · Zbl 1442.37114 · doi:10.1016/j.jde.2020.02.016
[33] P. R. Šepitka Šimon Hilscher, Distribution and number of focal points for linear Hamiltonian systems, Linear Algebra Appl., 611, 26-45 (2021) · Zbl 1460.37082 · doi:10.1016/j.laa.2020.11.018
[34] P. R. Šepitka Šimon Hilscher, Solutions with prescribed numbers of focal points of nonoscillatory linear Hamiltonian systems, Monatsh. Math., 200, 359-387 (2023) · Zbl 1511.37061 · doi:10.1007/s00605-022-01780-4
[35] R. Šimon Hilscher, Sturmian theory for linear Hamiltonian systems without controllability, Math. Nachr., 284, 831-843 (2011) · Zbl 1218.34038 · doi:10.1002/mana.201000071
[36] R. Šimon Hilscher, On general Sturmian theory for abnormal linear Hamiltonian systems, in Dynamical Systems, Differential Equations and Applications, Proceedings of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Dresden, 2010), W. Feng, Z. Feng, M. Grasselli, A. Ibragimov, X. Lu, S. Siegmund, and J. Voigt, editors, Discrete Contin. Dynam. Systems, Suppl. 2011, 684-691, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2011. · Zbl 1306.34051
[37] G. P. Stefani Zezza, Constrained regular \(LQ\)-control problems, SIAM J. Control Optim., 35, 876-900 (1997) · Zbl 0876.49031 · doi:10.1137/S0363012995286848
[38] Y. Tian, Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 433, 263-296 (2010) · Zbl 1205.15033 · doi:10.1016/j.laa.2010.02.018
[39] M. Wahrheit, Eigenvalue problems and oscillation of linear Hamiltonian systems, Int. J. Difference Equ., 2, 221-244 (2007)
[40] V. Zeidan, New second-order optimality conditions for variational problems with \(C^2\)-Hamiltonians, SIAM J. Control Optim., 40, 577-609 (2001) · Zbl 1016.49018 · doi:10.1137/S0363012999358725
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.