×

Some asymptotic properties of random walks on homogeneous spaces. (English) Zbl 1530.37008

Summary: Let \(G\) be a connected semisimple real Lie group with finite center, and \(\mu\) a probability measure on \(G\) whose support generates a Zariski-dense subgroup of \(G\). We consider the right \(\mu\)-random walk on \(G\) and show that each random trajectory spends most of its time at bounded distance of a well-chosen Weyl chamber. We infer that if \(G\) has rank one, and \(\mu\) has a finite first moment, then for any discrete subgroup \(\Lambda\subseteq G\), the \(\mu\)-walk and the geodesic flow on \(\Lambda \backslash G\) are either both transient, or both recurrent and ergodic, thus extending a well known theorem due to Hopf-Tsuji-Sullivan-Kaimanovich [E. Hopf, Bull. Am. Math. Soc. 77, 863–877 (1971; Zbl 0227.53003); M. Tsuji, Potential theory in modern function theory. Tokyo: Maruzen Co (1959; Zbl 0087.28401); D. Sullivan, Ann. Math. Stud. None, 465–496 (1981; Zbl 0567.58015); V. A. Kaimanovich, Ann. Math. (2) 152, No. 3, 659–692 (2000; Zbl 0984.60088)] dealing with the Brownian motion.

MSC:

37A17 Homogeneous flows
37A50 Dynamical systems and their relations with probability theory and stochastic processes
37H15 Random dynamical systems aspects of multiplicative ergodic theory, Lyapunov exponents
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53C30 Differential geometry of homogeneous manifolds
22D40 Ergodic theory on groups
22E40 Discrete subgroups of Lie groups
60G50 Sums of independent random variables; random walks

References:

[1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, 50, Amer. Math. Soc., Providence, RI, 1997. · Zbl 0882.28013
[2] A. Ancona, Positive harmonic functions and hyperbolicity, in Potential Theory-Surveys and Problems, 1-23, Lecture Notes in Math., 1344, Springer, Berlin, 1988. · Zbl 0677.31006
[3] A. Ancona, Théorie du potentiel sur les graphes et les variétés, in École d’été de Probabilités de Saint-Flour XVIII-1988, 1-112, Lecture Notes in Math., 1427, Springer, Berlin, 1990. · Zbl 0719.60074
[4] T. Bénard, Marches Aléatoires sur les Espaces Homogènes de Volume Infini, PhD thesis, ENS Paris - Université Paris Saclay, 2020, https://www.tbenardmath.com/.
[5] , Y. Benoist and J.-F. Quint, Mesures stationnaires et fermés invariants des espaces homogènes, Ann. of Math. (2), 174 (2011), 1111-1162. · Zbl 1241.22007
[6] Y. J.-F. Benoist Quint, Stationary measures and invariant subsets of homogeneous spaces (II), J. Amer. Math. Soc., 26, 659-734 (2013) · Zbl 1268.22011 · doi:10.1090/S0894-0347-2013-00760-2
[7] Y. J.-F. Benoist Quint, Stationary measures and invariant subsets of homogeneous spaces (III), Ann. of Math. (2), 178, 1017-1059 (2013) · Zbl 1279.22013 · doi:10.4007/annals.2013.178.3.5
[8] Y. Benoist and J.-F. Quint, Random Walks on Reductive Groups, Modern Surveys in Mathematics, 62, Springer, 2016. · Zbl 1366.60002
[9] S. P. P. Blachère Haïssinsky Mathieu, Harmonic measures versus quasiconformal measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér. (4), 44, 683-721 (2011) · Zbl 1243.60005 · doi:10.24033/asens.2153
[10] A. Borel and J. Tits, Groupes reductifs, Publ. Math. Inst. Hautes Étud. Sci., 27 (1965), 55-150. · Zbl 0145.17402
[11] P. Bougerol and J. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, Boston, 1985. · Zbl 0572.60001
[12] K. Corlette, Hausdorff dimensions of limit sets I, Invent. Math., 102, 521-541 (1990) · Zbl 0744.53030 · doi:10.1007/BF01233439
[13] R. Coulon, R. Dougall, B. Schapira and S. Tapie, Twisted Patterson-Sullivan measures and applications to amenability and coverings, preprint, arXiv: 1809.10881, 2018.
[14] A. Eskin and E. Lindenstrauss, Random walks on locally homogeneous spaces, http://www.math.uchicago.edu/ eskin/RandomWalks/paper.pdf, 2018.
[15] A. Eskin and G. Margulis, Recurrence properties of random walks on homogeneous manifolds, in Random Walks and Geometry, 431-444, Walter de Gruyter, Berlin, 2004. · Zbl 1064.60092
[16] H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc., 108 (1963), 377-428., · Zbl 0203.19102
[17] Y. Guivarc’h and É. Le Page, Spectral gap properties for linear random walks and Pareto’s asymptotics for affine stochastic recursions, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 503-574. · Zbl 1357.60010
[18] Y. Guivarc’h and A. Raugi, Products of random matrices: Convergence theorems, in Random matrices and their applications, 31-54, Contemp. Math., 50, Amer. Math. Soc., 1986. · Zbl 0592.60015
[19] S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators and Spherical Functions (1984) · Zbl 0543.58001
[20] E. Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Leipzig, 91 (1939), 261-304. · Zbl 0024.08003
[21] E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc., 77, 863-877 (1971) · Zbl 0227.53003 · doi:10.1090/S0002-9904-1971-12799-4
[22] V. A. Kaimanovich, Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. Reine Angew. Math., 455, 57-104 (1994) · Zbl 0803.58032 · doi:10.1515/crll.1994.455.57
[23] V. A. Kaimanovich, The Poisson formula for groups with hyperbolic properties, Ann. of Math. (2), 152, 659-692 (2000) · Zbl 0984.60088 · doi:10.2307/2661351
[24] H. Kesten, The limit points of a normalized random walk, Ann. Math. Statist., 41, 1173-1205 (1970) · Zbl 0233.60062 · doi:10.1214/aoms/1177696894
[25] J. Lacroix, Chaînes de Markov et Processus de Poisson, notes de cours, 2001-2002.
[26] F. Ledrappier, Some asymptotic properties of random walks on free groups, in Topics in Probability and Lie Groups: Boundary Theory, 117-152, CRM Proc. Lecture Notes, 28, Amer. Math. Soc., Providence, RI, 2001. · Zbl 0994.60073
[27] J. Li, Fourier decay, renewal theorem and spectral gaps for random walks on split semisimple lie groups, preprint, arXiv: 1811.06484, 2018.
[28] F. Paulin, Cours de seconde année de mastère: Groupes et géométries, https://www.imo.universite-paris-saclay.fr/ frederic.paulin/notescours/liste_notescours.html, 2013-2014.
[29] M. Rees, Checking ergodicity of some geodesic flows with infinite Gibbs measure, Ergodic Theory Dynam. Systems, 1, 107-133 (1981) · Zbl 0469.58012 · doi:10.1017/S0143385700001206
[30] A. Sisto, Tracking rates of random walks, Israel J. Math., 220, 1-28 (2017) · Zbl 1407.60064 · doi:10.1007/s11856-017-1508-9
[31] D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, 465-496, Princeton Univ. Press, 1981. · Zbl 0567.58015
[32] G. Tiozzo, Sublinear deviation between geodesics and sample paths, Duke Math. J., 164, 511-539 (2015) · Zbl 1314.30085 · doi:10.1215/00127094-2871197
[33] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. · Zbl 0087.28401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.