×

Defining the spectral position of a Neumann domain. (English) Zbl 1530.35163

Summary: A Laplacian eigenfunction on a two-dimensional Riemannian manifold provides a natural partition into Neumann domains, a.k.a. a Morse-Smale complex. This partition is generated by gradient flow lines of the eigenfunction, which bound the so-called Neumann domains. We prove that the Neumann Laplacian defined on a Neumann domain is self-adjoint and has a purely discrete spectrum. In addition, we prove that the restriction of an eigenfunction to any one of its Neumann domains is an eigenfunction of the Neumann Laplacian. By comparison, similar statements about the Dirichlet Laplacian on a nodal domain of an eigenfunction are basic and well-known. The difficulty here is that the boundary of a Neumann domain may have cusps and cracks, so standard results about Sobolev spaces are not available. Another very useful common fact is that the restricted eigenfunction on a nodal domain is the first eigenfunction of the Dirichlet Laplacian. This is no longer true for a Neumann domain. Our results enable the investigation of the resulting spectral position problem for Neumann domains, which is much more involved than its nodal analogue.

MSC:

35P05 General topics in linear spectral theory for PDEs
58J05 Elliptic equations on manifolds, general theory
58C40 Spectral theory; eigenvalue problems on manifolds
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
37C15 Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems
57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)

References:

[1] 10.1017/9781108615259.011 · Zbl 1473.05163 · doi:10.1017/9781108615259.011
[2] 10.1007/s00023-016-0468-7 · Zbl 1350.53050 · doi:10.1007/s00023-016-0468-7
[3] 10.1007/s12220-020-00444-9 · Zbl 1462.58006 · doi:10.1007/s12220-020-00444-9
[4] 10.1007/978-1-4020-2696-6 · doi:10.1007/978-1-4020-2696-6
[5] 10.1016/j.anihpc.2020.08.001 · Zbl 1459.35174 · doi:10.1016/j.anihpc.2020.08.001
[6] 10.1007/BF02568142 · Zbl 0334.35022 · doi:10.1007/BF02568142
[7] ; Edmunds, D. E.; Evans, W. D., Spectral theory and differential operators (1987) · Zbl 0628.47017
[8] 10.1016/j.jmaa.2020.124287 · Zbl 1453.35059 · doi:10.1016/j.jmaa.2020.124287
[9] ; Hartman, Philip, On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana (2), 5, 220 (1960) · Zbl 0127.30202
[10] 10.1016/0022-1236(91)90130-W · Zbl 0741.35043 · doi:10.1016/0022-1236(91)90130-W
[11] 10.1016/0022-1236(92)90063-O · Zbl 0783.35040 · doi:10.1016/0022-1236(92)90063-O
[12] 10.1142/3197 · doi:10.1142/3197
[13] 10.1098/rsta.2012.0505 · Zbl 1322.81044 · doi:10.1098/rsta.2012.0505
[14] ; McLean, William, Strongly elliptic systems and boundary integral equations (2000) · Zbl 0948.35001
[15] 10.1007/978-1-4613-0003-8 · doi:10.1007/978-1-4613-0003-8
[16] ; Reed, Michael; Simon, Barry, Methods of modern mathematical physics, I : Functional analysis (1972) · Zbl 0242.46001
[17] ; Reed, Michael; Simon, Barry, Methods of modern mathematical physics, IV : Analysis of operators (1978) · Zbl 0401.47001
[18] 10.2307/2374041 · Zbl 0355.58017 · doi:10.2307/2374041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.