×

Lifespan estimates and asymptotic stability for a class of fourth-order damped \(p\)-Laplacian wave equations with logarithmic nonlinearity. (English) Zbl 1530.35058

Summary: In this study, we investigate a damped \(p\)-Laplacian wave equation with logarithmic nonlinearity, given by \[ u_{tt}+\Delta^2 u -\Delta_p u+(g*\Delta u)(t)-\Delta u_t+\eta (t)u_t=|u|^{\gamma -2}u\ln |u| \text{ in } \Omega \times{\mathbb{R}}^+, \] where \(\gamma>p>2\) and \(\Omega \subset{\mathbb{R}}^n\). By making appropriate assumptions on the relaxation function \(g\) and the initial data, we establish the occurrence of finite time blow-up for solutions at varying initial energy levels. For sub-critical initial energy, we obtain blow-up solutions within the framework of potential wells in combination with concavity arguments. We also demonstrate that under suitable conditions, solutions with arbitrarily high positive initial energy will blow up. Furthermore, we discuss lifespan estimates for blowing up solutions. In addition, we provide a general stability analysis of the solution energy. Our results in this work complement and extend the previous work of D. C. Pereira et al. [Math. Methods Appl. Sci. 46, No. 8, 8831–8854 (2023; Zbl 1529.35094)] in which the blow-up and decay results were obtained for the case \(\gamma =p\).

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
35L35 Initial-boundary value problems for higher-order hyperbolic equations
35L76 Higher-order semilinear hyperbolic equations

Citations:

Zbl 1529.35094
Full Text: DOI

References:

[1] Al-Gharabli, MM, New general decay results for a viscoelastic plate equation with a logarithmic nonlinearity, Bound Value Probl., 2019, 194 (2019) · Zbl 1524.35365 · doi:10.1186/s13661-019-01308-0
[2] Al-Gharabli, MM; Guesmia, A.; Messaoudi, SA, Existence and a general decay results for a viscoelastic plate equation logarithmic nonlinearity, Commun. Pure Appl. Anal., 18, 159-180 (2019) · Zbl 1400.35177 · doi:10.3934/cpaa.2019009
[3] Al-Gharabli, MM; Messaoudi, SA, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, J. Evol. Equ., 18, 105-125 (2018) · Zbl 1421.35024 · doi:10.1007/s00028-017-0392-4
[4] Al-Gharabli, MM; Messaoudi, SA, The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term, J. Math. Anal. Appl., 454, 1114-1128 (2017) · Zbl 1379.35020 · doi:10.1016/j.jmaa.2017.05.030
[5] Al’shin, AB; Korpusov, MO; Sveshnikov, AG, Blow-Up in Nonlinear Sobolev Type Equations (2011), Berlin: De Gruyter, Berlin · Zbl 1259.35002 · doi:10.1515/9783110255294
[6] An, LJ; Peirce, A., A weakly nonlinear analysis of elasto-plastic-microstructure models, SIAM J. Appl. Math., 55, 136-155 (1995) · Zbl 0815.73022 · doi:10.1137/S0036139993255327
[7] Andrade, D.; Jorge Silva, MA; Ma, TF, Exponential stability for a plate equation with p-Laplacian and memory terms, Math. Methods Appl. Sci., 35, 4, 417-426 (2012) · Zbl 1235.35198 · doi:10.1002/mma.1552
[8] Andrews, G., On the existence of solutions to the equation \(u_{tt}=u_{xxt}+\sigma (u_x)_x\), J. Differ. Equ., 35, 200-231 (1980) · Zbl 0397.35011 · doi:10.1016/0022-0396(80)90040-6
[9] Bialynicki-Birula, I.; Mycielski, J., Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 23, 4, 461-466 (1975)
[10] Bialynicki-Birula, I.; Mycielski, J., Nonlinear wave mechanics, Ann. Phys., 100, 1-2, 62-93 (1976) · doi:10.1016/0003-4916(76)90057-9
[11] Cao, Y.; Liu, C., Initial boundary value problem for a mixed pseudo-parabolic \(p\)-Laplacian type equation with logarithmic nonlinearity, Electron. J. Differ. Equ., 116, 1-19 (2018) · Zbl 1391.35230
[12] Cheng, Y.; Chu, Y., A class of fourth-order hyperbolic equations with strongly damped and nonlinear logarithmic terms, Electron. Res. Arch., 29, 6, 3867-3887 (2021) · Zbl 1478.35137 · doi:10.3934/era.2021066
[13] Chen, Y.; Xu, R., Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal., 192 (2020) · Zbl 1436.35257 · doi:10.1016/j.na.2019.111664
[14] Clements, JC, On the existence and uniqueness of solutions of the equation \(u_{tt}-\partial \sigma_i(u_{x_i})/\partial x_i-\Delta_Nu_t=f\), Can. Math. Bull., 18, 181-187 (1975) · Zbl 0312.35017
[15] Chu, Y.; Wu, Y.; Cheng, L., Blow up and decay for a class of \(p\)-Laplacian hyperbolic equation with logarithmic nonlinearity, Taiwan. J. Math., 26, 4, 741-763 (2022) · Zbl 1496.35099 · doi:10.11650/tjm/220107
[16] Ding, H.; Zhou, H., Global existence and blow-up for a mixed pseudo-parabolic \(p\)-Laplacian type equation with logarithmic nonlinearity, J. Math. Anal. Appl., 478, 393-420 (2019) · Zbl 1447.35202 · doi:10.1016/j.jmaa.2019.05.018
[17] Dimova, D.; Kolkovska, N.; Kutev, N., Revised concavity method and application to Klein-Gordon equation, Filomat, 30, 3, 831-839 (2016) · Zbl 1474.35482 · doi:10.2298/FIL1603831D
[18] Esquivel-Avila, JA, A differential inequality and the blow-up of its solutions, Appl. Math. E-Notes, 22, 178-183 (2022) · Zbl 1514.34036
[19] Enqvist, K.; McDonald, J., Q-balls and baryogenesis in the MSSM, Phys. Lett. B, 425, 309-321 (1998) · doi:10.1016/S0370-2693(98)00271-8
[20] Górka, P., Logarithmic Klein-Gordon equation, Acta Phys. Pol. B, 40, 1, 59-66 (2009) · Zbl 1371.81101
[21] Greenberg, JM; Mac Camy, RC; Mizel, VJ, On the existence, uniqueness, and stability of solutions of the equation \(\sigma^{\prime }(u_x)u_{xx}+\lambda u_{xtx}=\rho_0u_{tt}\), J. Math. Mech., 17, 7, 707-728 (1968) · Zbl 0157.41003
[22] Gurtin, ME; Pipkin, AC, A general theory of heat conduction with finite wave speeds, Arch. Ration. Mech. Anal., 31, 2, 113-126 (1968) · Zbl 0164.12901 · doi:10.1007/BF00281373
[23] Han, Y.; Li, Q., Lifespan of solutions to a damped plate equation with logarithmic nonlinearity, Evol. Equ. Control Theory, 11, 1, 25-40 (2022) · Zbl 1486.35075 · doi:10.3934/eect.2020101
[24] Kang, JR, General decay for viscoelastic plate equation with \(p\)-Laplacian and time-varying delay, Bound. Value Probl., 2018, 1, 1-11 (2018) · Zbl 1499.35071 · doi:10.1186/s13661-018-0942-x
[25] Korpusov, MO, On blowup of solutions to a Kirchhoff type dissipative wave equation with a source and positive energy, Sib. Math. J., 53, 702-717 (2012) · Zbl 1255.35170 · doi:10.1134/S003744661204012X
[26] Le, CN; Le, XT, Global solution and blow-up for a class of \(p\)-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math., 151, 149-169 (2017) · Zbl 1373.35008 · doi:10.1007/s10440-017-0106-5
[27] Levine, HA, Instability and nonexistence of global solutions to nonlinear wave equations of the form \(P u_{tt}=-Au+F(u)\), Trans. Am. Math. Soc., 192, 1-21 (1974) · Zbl 0288.35003
[28] Levine, HA, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5, 138-146 (1974) · Zbl 0243.35069 · doi:10.1137/0505015
[29] Liao, M.; Li, Q., A class of fourth-order parabolic equations with logarithmic nonlinearity, Taiwan. J. Math., 24, 4, 975-1003 (2020) · Zbl 1461.35119 · doi:10.11650/tjm/190801
[30] Liu, G., The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. Res. Arch., 28, 1, 263-289 (2020) · Zbl 1447.35060 · doi:10.3934/era.2020016
[31] Massatt, P., Limiting behavior for strongly damped nonlinear wave equations, J. Differ. Equ., 48, 334-349 (1983) · Zbl 0561.35049 · doi:10.1016/0022-0396(83)90098-0
[32] Liu, Y.; Xu, RZ; Yu, T., Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations, Nonlinear Anal., 67, 3332-3348 (2008) · Zbl 1149.35367 · doi:10.1016/j.na.2007.03.029
[33] Lu, H.; Zhang, Z., The Cauchy problem for a parabolic \(p\)-Laplacian equation with combined nonlinearities, J. Math. Anal. Appl., 514, 2 (2022) · Zbl 1491.35068 · doi:10.1016/j.jmaa.2022.126329
[34] Pereira, DC; Araújo, GM; Raposo, CA; Cabanillas, VR, Blow-up results for a viscoelastic beam equation of \(p\)-Laplacian type with strong damping and logarithmic source, Math. Methods Appl. Sci., 46, 8831-8854 (2023) · Zbl 1529.35094 · doi:10.1002/mma.9020
[35] Pereira, DC; Raposo, CA; Maranhão, CHM, Global solution and asymptotic behaviour for a wave equation type \(p\)-Laplacian with \(p\)-Laplacian damping, MathLAB J., 5, 35-45 (2020)
[36] Park, SH, Stability for a viscoelastic plate equation with \(p\)-Laplacian, Bull. Korean Math. Soc., 52, 3, 907-914 (2015) · Zbl 1320.35232 · doi:10.4134/BKMS.2015.52.3.907
[37] Pişkin, E.; Boulaaras, S.; Irkil, N., Qualitative analysis of solutions for the \(p\)-Laplacian hyperbolic equation with logarithmic nonlinearity, Math. Methods Appl. Sci., 44, 6, 4654-4672 (2021) · Zbl 1472.35171 · doi:10.1002/mma.7058
[38] Renardy, M.; Hrusa, WJ; Nohel, JA, Mathematical Problems in Viscoelasticity (1987), Essex: Longman Scientific and Technical, Essex · Zbl 0719.73013
[39] Rosen, G., Dilatation covariance and exact solutions in local relativistic field theories, Phys. Rev., 183, 5, 1186 (1969) · doi:10.1103/PhysRev.183.1186
[40] Shao, X.; Tang, G., Blow-up phenomena for a class of fourth order parabolic equation, J. Math. Anal. Appl., 505, 125445 (2022) · Zbl 1475.35080 · doi:10.1016/j.jmaa.2021.125445
[41] Jorge Silva, MA; Ma, TF, On a viscoelastic plate equation with history setting and perturbation of \(p\)-Laplacian type, IMA J. Appl. Math., 78, 6, 1130-1146 (2013) · Zbl 1282.35372 · doi:10.1093/imamat/hxs011
[42] Torebek, B.T.: Critical exponents for the \(p\)-Laplace heat equations with combined nonlinearities. arXiv preprint arXiv:2212.14332 (2022)
[43] Xu, RZ; Lian, W.; Kong, X.; Yang, Y., Fourth order wave equation with nonlinear strain and logarithmic nonlinearity, Appl. Numer. Math., 141, 185-205 (2019) · Zbl 1421.35204 · doi:10.1016/j.apnum.2018.06.004
[44] Yang, H.; Han, Y., Blow-up for a damped \(p\)-Laplacian type wave equation with logarithmic nonlinearity, J. Differ. Equ., 306, 569-589 (2022) · Zbl 1478.35055 · doi:10.1016/j.jde.2021.10.036
[45] Ye, Y.; Zhu, Q., Existence and nonexistence of global solutions for logarithmic hyperbolic equation, Electron. Res. Arch., 30, 3, 1035-1051 (2022) · Zbl 1486.35082 · doi:10.3934/era.2022054
[46] Zhijian, Y., Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow, Math. Methods Appl. Sci., 32, 1082-1104 (2009) · Zbl 1183.35046 · doi:10.1002/mma.1080
[47] Zu, G.; Sun, L.; Wu, J., Global existence and blow-up for wave equation of \(p\)-Laplacian type, Anal. Math. Phys. (2023) · Zbl 1517.35140 · doi:10.1007/s13324-23-00813-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.