×

Unique mild solution for Caputo’s fractional perturbed evolution equations with state-dependent delay. (English) Zbl 1530.34065

Summary: This study examines if there are any mild solutions for the perturbed partial functional and neutral functional evolution equations with state-dependent delay when the derivative utilizes Caputo’s fractional derivative, as well as whether any such solutions are unique. The solution itself determines how long the equations take to solve. The work proves the existence and uniqueness of these solutions using semigroup theory and the Banach contraction theorem in Banach spaces.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K40 Neutral functional-differential equations
37L05 General theory of infinite-dimensional dissipative dynamical systems, nonlinear semigroups, evolution equations
34G20 Nonlinear differential equations in abstract spaces
Full Text: DOI

References:

[1] N. R. P. M. H. Abada Agarwal Benchohra Hammouche, Existence results for nondensely defined impulsive semilinear functional differential equations with state-dependent delay, Asian-Eur. J. Math., 1, 449-468 (2008) · Zbl 1179.34070 · doi:10.1142/S1793557108000382
[2] R. P. S. M. Agarwal Baghli Benchohra, Controllability of solutions on semiinfinite interval for classes of semilinear functional and neutral functional evolution equations with infinite delay, Appl. Math. Optim., 60, 253-274 (2009) · Zbl 1179.93041 · doi:10.1007/s00245-009-9073-1
[3] D. Aoued and S. Baghli-Bendimerad, Mild solution for perturbed evolution equations with infinite state-dependent delay, Electron. J. Qual. Theory Differ. Equ., (2013), No. 59, 24 pp. · Zbl 1340.34285
[4] D. S. Aoued Baghli-Bendimerad, Controllability of mild solutions for evolution equations with infinite state-dependent delay, Eur. J. Pure Appl. Math., 9, 383-401 (2016) · Zbl 1357.93009
[5] A. M. N. J. J. Arara Benchohra Hamidi Nieto, Fractional order differential equations on a unbounded domain, Nonlinear Anal. TMA, 72, 580-586 (2010) · Zbl 1179.26015 · doi:10.1016/j.na.2009.06.106
[6] S. Baghli-Bendimerad, Global mild solution for functional evolution inclusions with state-dependent delay, J. Adv. Res. Dynam. Control Syst., 5, 1-19 (2013)
[7] S. M. Baghli Benchohra, Uniqueness results for partial functional differential equations in Fréchet spaces, Fixed-Point Theory, 9, 395-406 (2008) · Zbl 1165.34417
[8] S. M. Baghli Benchohra, Existence results for semilinear neutral functional differential equations involving evolution operators in Fréchet spaces, Georgian Math. J., 17, 423-436 (2010) · Zbl 1210.34109 · doi:10.1515/gmj.2010.030
[9] S. M. Baghli Benchohra, Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay, Differential Integral Equations, 23, 31-50 (2010) · Zbl 1240.34378
[10] S. Baghli and M. Benchohra, Perturbed functional and neutral functional evolution equations with infinite delay in Fréchet spaces, Electron. J. Differential Equations, (2008), No. 69, 19 pp. · Zbl 1190.34098
[11] S. Baghli and M. Benchohra, Multivalued evolution equations with infinite delay in Fréchet spaces, Electron. J. Qual. Theory Differ. Equ., (2008), No. 33, 24 pp. · Zbl 1183.34103
[12] S. M. K. Baghli Benchohra Ezzinbi, Controllability results for semilinear functional and neutral functional evolution equations with infinite delay, Surv. Math. Appl., 4, 15-39 (2009) · Zbl 1188.34106
[13] S. M. J. J. Baghli Benchohra Nieto, Global uniqueness results for partial functional and neutral functional evolution equations with state-dependent delay, J. Adv. Differ. Equ., 2, 35-52 (2010)
[14] M. M. El-Borai, The fundamental solutions for fractional evolution equations of parabolic type, J. Appl. Math. Stoch. Anal., 2004, 197-211 (2004) · Zbl 1081.34053 · doi:10.1155/S1048953304311020
[15] A. M. A. El-Sayed, Fractional order evolution equations, J. Fract. Calc., 7, 89-100 (1995) · Zbl 0839.34069
[16] R. F. Gorenflo Mainardi, Fractional calculus and stable probability distributions, Arch. Mech., 50, 377-388 (1998) · Zbl 0934.35008
[17] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. · Zbl 1025.47002
[18] J. Y. He Zhou, Hölder regularity for non-autonomous fractional evolution equations, Fract. Calc. Appl. Anal., 25, 378-407 (2022) · Zbl 1503.35263 · doi:10.1007/s13540-022-00019-1
[19] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-verlag, New York, 1981. · Zbl 0456.35001
[20] E. Hernández, R. Sakthivel and S. Tanaka Aki, Existence results for impulsive evolution differential equations with state-dependent delay, Electron. J. Differential Equations, (2008), No. 28, 11 pp. · Zbl 1133.35101
[21] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. · Zbl 0998.26002
[22] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. · Zbl 1092.45003
[23] V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009. · Zbl 1188.37002
[24] A. S. Mebarki Baghli-Bendimerad, Neutral multi-valued integro-differential evolution equations with infinite state-dependent delay, Turkish J. Math., 44, 2312-2329 (2020) · Zbl 1493.34170 · doi:10.3906/mat-2007-66
[25] F. J. E. M. J. Mesri Lazreg Benchohra Henderson, Fractional non autonomous evolution equations in Fréchet spaces, Commun. Appl. Nonl. Anal., 28, 35-45 (2021)
[26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[27] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5, 367-386 (2002) · Zbl 1042.26003
[28] J. V. da C. K. D. Sousa Kucche, Existence uniqueness and stability of fractional impulsive functional differential inclusions, São Paulo J. Math. Sci., 15, 839-857 (2021) · Zbl 1483.34110 · doi:10.1007/s40863-021-00259-8
[29] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, \(2^{nd}\) edn. Springer, New York, 1997. · Zbl 0871.35001
[30] M. Ch. Y. Zhou Li Zhou, Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators, Axioms, 11, 1-13 (2022)
[31] Y. J. Zhou He, A Cauchy problem for fractional evolution equations with Hilfer’s fractional derivative on semi-infinite interval, Fract. Calc. Appl. Anal., 25, 924-961 (2022) · Zbl 1503.34038 · doi:10.1007/s13540-022-00057-9
[32] Y. F. Zhou Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59, 1063-1077 (2010) · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.