×

Algebraic structures in group-theoretical fusion categories. (English) Zbl 1530.18025

An important question in the theory of a fusion category \(\mathcal{C}\) is to classify indecomposable modules of \(\mathcal{C}\). This is equivalent to classify Morita class of indecomposable separable algebras in \(\mathcal{C}.\) But in general we know very little about this. For the pointed fusion categories, which we understood quite well, this classification is known due to V. Ostrik [Int. Math. Res. Not. 2003, No. 27, 1507–1520 (2003; Zbl 1044.18005)] and S. Natale [SIGMA, Symmetry Integrability Geom. Methods Appl. 13, Paper 042, 9 p. (2017; Zbl 1437.18011)] for a quite long time (one can find this result in [P. Etingof et al., Tensor categories. Providence, RI: American Mathematical Society (AMS) (2015; Zbl 1365.18001)]). This paper generalize this classification the case of group-theoretical fusion categories. The result is interesting and important. Maybe, it is also interesting to consider the setting of weakly group-theoretical fusion categories.

MSC:

18M20 Fusion categories, modular tensor categories, modular functors
16D90 Module categories in associative algebras
16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)

References:

[1] Brown, LG; Green, P.; Rieffel, MA, Stable isomorphism and strong Morita equivalence of C∗-algebras, Pac. J. Math., 71, 2, 349-363 (1977) · Zbl 0362.46043 · doi:10.2140/pjm.1977.71.349
[2] Bulacu, D.; Torrecillas, B., On Frobenius and separable algebra extensions in monoidal categories: applications to wreaths, J. Noncommut. Geom., 9, 3, 707-774 (2015) · Zbl 1347.16035 · doi:10.4171/jncg/206
[3] Cohn, PM, Further Algebra and Applications (2003), London: Springer, London · Zbl 1006.00001 · doi:10.1007/978-1-4471-0039-3
[4] Day, B.; Pastro, C., Note on Frobenius monoidal functors, New York J. Math., 14, 733-742 (2008) · Zbl 1178.18006
[5] Douglas, MR; Nekrasov, NA, Noncommutative field theory, Rev. Modern Phys., 73, 4, 977-1029 (2001) · Zbl 1205.81126 · doi:10.1103/RevModPhys.73.977
[6] Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories, Volume 205 of Mathematical Surveys and Monographs (2015), Providence: American Mathematical Society, Providence · Zbl 1365.18001
[7] Etingof, P., Kinser, R., Walton, C.: Tensor Algebras in Finite Tensor Categories. International Mathematics Research Notices, 12. rnz332 (2019) · Zbl 1490.18008
[8] Etingof, P.; Nikshych, D.; Ostrik, V., On fusion categories, Ann. Math. (2), 162, 2, 581-642 (2005) · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581
[9] Etingof, P.; Nikshych, D.; Ostrik, V., Weakly group-theoretical and solvable fusion categories, Adv. Math., 226, 1, 176-205 (2011) · Zbl 1210.18009 · doi:10.1016/j.aim.2010.06.009
[10] Etingof, P.; Rowell, E.; Witherspoon, S., Braid group representations from twisted quantum doubles of finite groups, Pacific J. Math., 234, 1, 33-41 (2008) · Zbl 1207.16038 · doi:10.2140/pjm.2008.234.33
[11] Fuchs, J.; Runkel, I.; Schweigert, C., Conformal correlation functions, Frobenius algebras and triangulations, Nucl. Phys. B, 624, 3, 452-468 (2002) · Zbl 0985.81113 · doi:10.1016/S0550-3213(01)00638-1
[12] Fuchs, J.; Runkel, I.; Schweigert, C., TFT construction of RCFT correlators. I. Partition functions, Nucl. Phys. B, 646, 3, 353-497 (2002) · Zbl 0999.81079 · doi:10.1016/S0550-3213(02)00744-7
[13] Fuchs, J., Schweigert, C.: Category theory for conformal boundary conditions. In: Vertex Operator Algebras in Mathematics and Physics (Toronto, ON, 2000), Volume 39 of Fields Inst. Commun., pp 25-70. Amer. Math. Soc., Providence (2003) · Zbl 1084.17012
[14] Fuchs, J.; Stigner, C., On Frobenius algebras in rigid monoidal categories, Arab. J. Sci. Eng. Sect. C Theme Issues, 33, 2, 175-191 (2008) · Zbl 1185.18007
[15] Galindo, C.; Plavnik, JY, Tensor functors between Morita duals of fusion categories, Lett. Math Phys., 107, 3, 553-590 (2017) · Zbl 1414.18002 · doi:10.1007/s11005-016-0914-y
[16] Gelaki, S., Exact factorizations and extensions of fusion categories, J. Exact Algebra, 480, 505-518 (2017) · Zbl 1405.18012 · doi:10.1016/j.jalgebra.2017.02.034
[17] Gelaki, S.; Naidu, D., Some properties of group-theoretical categories, J. Algebra, 322, 8, 2631-2641 (2009) · Zbl 1209.18007 · doi:10.1016/j.jalgebra.2009.05.047
[18] Kock, J.: Frobenius Algebras and 2-D Topological Quantum Field Theories. London Mathematical Society Student Texts. Cambridge University Press (2003)
[19] Kong, L.; Runkel, I., Cardy algebras and sewing constraints, I. Comm. Math. Phys., 292, 3, 871-912 (2009) · Zbl 1214.81251 · doi:10.1007/s00220-009-0901-6
[20] Lam, TY, Lectures on Modules and Rings. Volume 189 of Graduate Texts in Mathematics (1999), New York: Springer, New York · Zbl 0911.16001 · doi:10.1007/978-1-4612-0525-8
[21] Mombelli, M.: Una introducción a las categorías tensoriales y sus representaciones. Available at https://www.famaf.unc.edu.ar/mombelli/categorias-tensoriales3.pdf, retrieved May 18, 2019
[22] Müger, M., From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories, J. Pure Appl. Algebra, 180, 1-2, 81-157 (2003) · Zbl 1033.18002 · doi:10.1016/S0022-4049(02)00247-5
[23] Natale, S., Frobenius-Schur indicators for a class of fusion categories, Pac. J. Math., 221, 2, 353-377 (2005) · Zbl 1108.16035 · doi:10.2140/pjm.2005.221.353
[24] Natale, S., On the equivalence of module categories over a group-theoretical fusion category, SIGMA Symmetry Integrability Geom. Methods Appl., 13, 042 (2017) · Zbl 1437.18011
[25] Ostrik, V., Module categories over the Drinfeld double of a finite group, Int. Math. Res. Not., 2003, 27, 1507-1520 (2003) · Zbl 1044.18005 · doi:10.1155/S1073792803205079
[26] Ostrik, V., Module categories, weak Hopf algebras and modular invariants, Transform. Groups, 8, 2, 177-206 (2003) · Zbl 1044.18004 · doi:10.1007/s00031-003-0515-6
[27] Seiberg, N.; Witten, E., String theory and noncommutative geometry, J. High Energy Phys., (9):Paper, 32, 93 (1999) · Zbl 0957.81085
[28] Shimizu, K., On unimodular finite tensor categories, Int. Math. Res. Not. IMRN, 1, 277-322 (2017) · Zbl 1405.18013
[29] Street, R., Quantum groups, volume 19 of Australian Mathematical Society Lecture Series (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1117.16031
[30] Szlachanyi, K.: Adjointable monoidal functors and quantum groupoids. In: Hopf Algebras in Noncommutative Geometry and Physics, Volume 239 of Lecture Notes in Pure and Appl. Math., pp 291-307. Dekker, New York (2005) · Zbl 1064.18008
[31] Xu, P., Morita equivalence of Poisson manifolds, Comm. Math. Phys., 142, 3, 493-509 (1991) · Zbl 0746.58034 · doi:10.1007/BF02099098
[32] Yamagami, S.: Frobenius algebras in tensor categories and bimodule extensions. In: Galois Theory, Hopf Algebras, and Semiabelian Categories, Volume 43 of Fields Inst. Commun., pp 551-570. Amer. Math. Soc., Providence (2004) · Zbl 1079.18004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.