×

About a fixed-point-type transformation to solve quadratic matrix equations using the Krasnoselskij method. (English) Zbl 1530.15010

MSC:

15A24 Matrix equations and identities
65F45 Numerical methods for matrix equations

References:

[1] ZhengZC, RenGX, WangWJ. A reduction method for large scale unsymmetric eigenvalue problems in structural dynamics. J Sound Vibration. 1997;199:253‐268. · Zbl 1235.70012
[2] RamaswamiV. Matrix analytic methods for stochastic fluid flows. Teletraffic Engineering in a Competitive world. Proceedings of the 16th International Teletraffic Congress. Edinburgh, UK: Elsevier Science B.V.; 1999:1019‐1030.
[3] BiniDA, IannazzoB, MeiniB. Numerical Solution of Algebraic Riccati Equations. SIAM Philadelphia; 2012. · Zbl 1244.65058
[4] SimaV. Algorithms for Linear‐Quadratic Optimization, V. 200 of Monographs and Textbooks in Pure and Applied Mathematics. New York; 1996. · Zbl 0863.65038
[5] JuangJ. Global existence and stability of solutions of matrix Riccati equations. J Math Anal Appl. 2001;258:1‐12. · Zbl 0984.34041
[6] MehrmannVL. The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution. Berlin: volume 163 of Lecture Notes in Control & Information Sciences‐ Springer; 1991. · Zbl 0746.93001
[7] LancasterP, RodmanL. Algebraic Riccati Equations. Oxford University Press New York: The Clarendon Press; 1995. · Zbl 0836.15005
[8] RogersLCG. Fluid models in queueing theory and Wiener‐Hopf factorization of Markov chains. Ann Appl Probab. 1994;4(2):390‐413. · Zbl 0806.60052
[9] LancasterP, TismenetskyM. The Theory of Matrices with Applications. Orlando: Academic Press; 1985. · Zbl 0558.15001
[10] LancasterP, RodmanL. Algebraic Riccati Equations. Oxford: Oxford Science Publications, Oxford; 1995. · Zbl 0836.15005
[11] DavisGJ. Numerical solution of a quadratic matrix equation. SIAM J Sci Statist Comput. 1981;2:164‐175. · Zbl 0467.65021
[12] DavisGJ. Algorithm 598: an algorithm to compute solvents of the matrix equation
[( {AX}^2+ BX+C=0 \]\). ACM Trans Math Software. 1983;9:246‐254. · Zbl 0512.65029
[13] HighamNJ, KimHM. Solving a quadratic matrix equation by Newton’s method with exact line searches. Siam J Matrix Annal Appl. 2001;23(2):303‐316. · Zbl 1017.65038
[14] KratzW, StickelE. Numerical solution of matrix polynomial equations by Newton’s method. IMA J Numer Anal. 1987;7:355‐369. · Zbl 0631.65040
[15] BaiZ‐Z, GuoX‐X, YinJ‐F. On two iteration methods for the quadratic matrix equations. Int J Numer Anal Mod. 2005;2:114‐122.
[16] Hernández‐VerónMA, RomeroN. Numerical analysis for the quadratic matrix equations from a modification of fixed‐point type. Math Meth Appl Sci. 2019;42:5856‐5866. · Zbl 1431.65058
[17] AmatS, EzquerroJA, Hernández‐VerónMA. On a new family of high‐order iterative methods for the matrix pth root. Numer Linear Algebra Appl. 2015;22:585‐595. · Zbl 1349.65153
[18] GaoY. Newton’s method for the quadratic matrix equation. Appl Math Comput. 2006;182:1772‐1779. · Zbl 1117.65071
[19] KrasnoselskijMA. Two remarks on the method of successive approximations (Russian). Uspehi Mat Nauk. 1955;10(63):123‐127. · Zbl 0064.12002
[20] PadcharoenA, KumamP, ChaipunyaP, ShehuY. Convergence of inertial modified Krasnoselskii‐Mann iteration with application to image recovery. Thai J Math. 2020;18(1):126‐142. · Zbl 1495.47108
[21] BerindeV. Iterative Approximation of Fixed Points. New York: Springer; 2007. · Zbl 1165.47047
[22] EzquerroJA, Hernández‐VerónMA. Domains of global convergence for Newton’s method from auxiliary points. Appl Math Lett. 2018;85:48‐56. · Zbl 1405.65067
[23] EzquerroJA, HernándezMA, RomeroN. On some one‐point hybrid iterative methods. Nonlinear Anal. 2010;72:587‐601. · Zbl 1180.65069
[24] Hernández‐VerónMA, RomeroN. An efficient predictor‐corrector iterative scheme for solving Wiener‐Hopf problems. J Comput Appl Math. 2022;404:113554. doi:10.1016/j.cam.2021.113554 · Zbl 1481.65064
[25] ArgyrosIK, HiloutS. Numerical Methods in Nonlinear Analysis. New Jersey: World Scientific Publ. Comp.; 2013.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.