×

Harnack inequality and one-endedness of UST on reversible random graphs. (English) Zbl 1530.05167

Summary: We prove that for recurrent, reversible graphs, the following conditions are equivalent: (a) existence and uniqueness of the potential kernel, (b) existence and uniqueness of harmonic measure from infinity, (c) a new anchored Harnack inequality, and (d) one-endedness of the wired uniform spanning tree. In particular this gives a proof of the anchored (and in fact also elliptic) Harnack inequality on the UIPT. This also complements and strengthens some results of I. Benjamini et al. [Ann. Probab. 29, No. 1, 1–65 (2001; Zbl 1016.60009)]. Furthermore, we make progress towards a conjecture of D. J. Aldous and R. Lyons [Electron. J. Probab. 12, 1454–1508 (2007; Zbl 1131.60003); errata ibid. 22, Paper No. 51, 4 p. (2017); ibid. 24, Paper No. 25, 2 p. (2019)] by proving that these conditions are fulfilled for strictly subdiffusive recurrent unimodular graphs. Finally, we discuss the behaviour of the random walk conditioned to never return to the origin, which is well defined as a consequence of our results.

MSC:

05C80 Random graphs (graph-theoretic aspects)
60D05 Geometric probability and stochastic geometry
60J45 Probabilistic potential theory
60G50 Sums of independent random variables; random walks

References:

[1] Angel, O.; Hutchcroft, T.; Nachmias, A.; Ray, G., Hyperbolic and parabolic unimodular random maps, Geom. Funct. Anal., 28, 4, 879-942 (2018) · Zbl 1459.60018 · doi:10.1007/s00039-018-0446-y
[2] Aldous, D.; Lyons, R., Processes on unimodular random networks, Electr. J. Probab., 54, 1454-1508 (2007) · Zbl 1131.60003
[3] Ancona, A., Harnack’s principle at the frontier and fatou’s theory for an elliptic operator in a lipschitzian domain, Ann. Fourier Inst., 28, 4, 169-213 (1978) · Zbl 0377.31001 · doi:10.5802/aif.720
[4] Barlow, Martin T., Random Walks and Heat Kernels on Graphs. London Mathematical Society Lecture Note Series (2017), Cambridge: Cambridge University Press, Cambridge · Zbl 1365.05002 · doi:10.1017/9781107415690
[5] Benjamini, I.; Curien, N., Ergodic theory on stationary random graphs, Electron. J. Probab., 17, 1-20 (2012) · Zbl 1278.05222 · doi:10.1214/EJP.v17-2401
[6] Benjamini, I.; Curien, N., Simple random walk on the uniform infinite planar quadrangulation: subdiffusivity via pioneer points, Geom. Funct. Anal., 23, 2, 501-531 (2013) · Zbl 1274.60143 · doi:10.1007/s00039-013-0212-0
[7] Benjamini, I.; Curien, N.; Georgakopoulos, A., The Liouville and the intersection properties are equivalent for planar graphs, Electron. Commun. Probab., 17, 5 (2012) · Zbl 1252.05208 · doi:10.1214/ECP.v17-1913
[8] Benjamini, I.; Duminil-Copin, H.; Kozma, G.; Yadin, A., Disorder, entropy and harmonic functions, Ann. Probab., 43, 5, 2332-2373 (2015) · Zbl 1337.60248 · doi:10.1214/14-AOP934
[9] Berestycki, N.; Gwynne, E., Random walks on mated-CRT maps and Liouville Brownian motion, Commun. Math. Phys., 395, 773-857 (2022) · Zbl 1497.60068 · doi:10.1007/s00220-022-04482-y
[10] Barlow, MT; Járai, AA; Kumagai, T.; Slade, G., Random walk on the incipient infinite cluster for oriented percolation in high dimensions, Commun. Math. Phys., 278, 2, 385-431 (2008) · Zbl 1144.82030 · doi:10.1007/s00220-007-0410-4
[11] Benjamini, I.; Lyons, R.; Peres, Y.; Schramm, O., Uniform spanning forests, Ann. Probab., 29, 1, 1-65 (2001) · Zbl 1016.60009 · doi:10.1214/aop/1008956321
[12] Barlow, MT; Murugan, M., Stability of the elliptic Harnack inequality, Ann. Math., 187, 3, 777-823 (2018) · Zbl 1450.35131 · doi:10.4007/annals.2018.187.3.4
[13] Comets, F.; Popov, S.; Vachkovskaia, M., Two-dimensional random interlacements and late points for random walks, Commun. Math. Phys., 343, 1, 129-164 (2015) · Zbl 1336.60185 · doi:10.1007/s00220-015-2531-5
[14] Coulhon, T.; Saloff-Coste, L., Variétés riemanniennes isométriques à l’infini, Rev. Mat. Iberoam., 11, 3, 687-726 (1995) · Zbl 0845.58054 · doi:10.4171/RMI/190
[15] Curien, N.: Stationary random graphs (2021). https://www.imo.universite-paris-saclay.fr/ curien/enseignement.html
[16] Gwynne, E.; Miller, J., Random walk on random planar maps: spectral dimension, resistance, and displacement, Ann. Probab., 49, 3, 1097-1128 (2021) · Zbl 1483.60069 · doi:10.1214/20-AOP1471
[17] Gwynne, E.; Miller, J.; Sheffield, S., The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity, Ann. Probab., 49, 4, 1677-1717 (2021) · Zbl 1484.60007 · doi:10.1214/20-AOP1487
[18] Gantert, N.; Popov, S.; Vachkovskaia, M., On the range of a two-dimensional conditioned simple random walk, Ann. Henri Lebesgue, 2, 349-368 (2019) · Zbl 1454.60110 · doi:10.5802/ahl.20
[19] Grigor’yan, AA, The heat equation on noncompact Riemannian manifolds (in Russian), Mat. Sb., 182, 1, 55-87 (1991) · Zbl 0743.58031
[20] Hutchcroft, T.; Peres, Y., Collisions of random walks in reversible random graphs, Electron. Commun. Probab., 20, 1-6 (2015) · Zbl 1329.60357 · doi:10.1214/ECP.v20-4330
[21] Hutchcroft, T., Wired cycle-breaking dynamics for uniform spanning forests, Ann. Probab., 44, 6, 3879-3892 (2016) · Zbl 1364.05062 · doi:10.1214/15-AOP1063
[22] Hutchcroft, T., Interlacements and the wired uniform spanning forest, Ann. Probab., 46, 2, 1170-1200 (2018) · Zbl 1391.60021 · doi:10.1214/17-AOP1203
[23] Hutchcroft, T., Universality of high-dimensional spanning forests and sandpiles, Probab. Theory Relat. Fields, 176, 1, 533-597 (2020) · Zbl 1434.60296 · doi:10.1007/s00440-019-00923-3
[24] Kozma, G.; Nachmias, A., The Alexander-Orbach conjecture holds in high dimensions, Invent. Math., 178, 3, 635 (2009) · Zbl 1180.82094 · doi:10.1007/s00222-009-0208-4
[25] Kumagai, T.: Random walks on disordered media and their scaling limits. In: École d’Été de probabilités de Saint-Flour XL—2010. Springer (2014) · Zbl 1360.60003
[26] Lee, J.R.: Conformal growth rates and spectral geometry on distributional limits of graphs. arXiv, arXiv:1701.01598 (2017)
[27] Lee, James R: Relations between scaling exponents in unimodular random graphs. arXiv preprint arXiv:2007.06548 (2020)
[28] Lawler, GF; Limic, V., Random Walk: A Modern Introduction (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1210.60002 · doi:10.1017/CBO9780511750854
[29] Lyons, R.; Morris, B.; Schramm, O., Ends in uniform spanning forests, Electron. J. Probab., 13, 1702-1725 (2008) · Zbl 1191.60016 · doi:10.1214/EJP.v13-566
[30] Lyons, R.; Peres, Y., Probability on Trees and Networks, volume 42 of Cambridge Series in Statistical and Probabilistic Mathematics (2016), New York: Cambridge University Press, New York · Zbl 1376.05002 · doi:10.1017/9781316672815
[31] Lyons, R.; Peres, Y.; Schramm, O., Markov chain intersections and the loop-erased walk, Ann. Inst. Henri Poincare (B) Probab.Stat., 39, 5, 779-791 (2003) · doi:10.1016/S0246-0203(03)00033-5
[32] Norris, J., Markov Chains (1998), Cambridge: Cambridge University Press, Cambridge · Zbl 0938.60058
[33] Pemantle, R., Choosing a spanning tree for the integer lattice uniformly, Ann. Probab., 19, 4, 1559-1574 (1991) · Zbl 0758.60010 · doi:10.1214/aop/1176990223
[34] Popov, S.: Two-Dimensional Random Walk: From Path Counting to Random Interlacements. Institute of Mathematical Statistics Textbooks, Cambridge University Press (2021) · Zbl 1478.60003
[35] Popov, S.; Rolla, LT; Ungaretti, D., Transience of conditioned walks on the plane: encounters and speed of escape, Electron. J. Probab., 25, none, 1-23 (2020) · Zbl 1441.60056 · doi:10.1214/20-EJP458
[36] Sami, M.; Bouaziz, A.; Sifi, M., Discrete harmonic functions on an orthant in \({\mathbb{Z} }^d\), Electron. Commun. Probab., 20, 13 (2015) · Zbl 1332.60067 · doi:10.1214/ECP.v20-4249
[37] Saloff-Coste, L., A note on Poincaré, Sobolev and Harnack inequalities, Int. Math. Res. Not., 2, 27-38 (1992) · Zbl 0769.58054 · doi:10.1155/S1073792892000047
[38] Soardi, P.M., Woess, W.: Amenability, unimodularity, and the spectral radius of random walks on infinite graphs. Dipartimento di Matematica“ F. Enriques” (1988) · Zbl 0693.43001
[39] Trofimov, VI, Graphs with polynomial growth, Math. USSR Sb., 51, 2, 405 (1985) · Zbl 0565.05035 · doi:10.1070/SM1985v051n02ABEH002866
[40] Varopoulos, N.: Analysis and geometry on groups. In: Proceedings of the International Congress of Mathematicians 1990 Kyoto, vol. 1, pp. 951-957 (1991) · Zbl 0744.43006
[41] Van der Hofstad, R.; Járai, AA, The incipient infinite cluster for high-dimensional unoriented percolation, J. Stat. Phys., 114, 3, 625-663 (2004) · Zbl 1061.82016 · doi:10.1023/B:JOSS.0000012505.39213.6a
[42] Varopoulos, NT; Saloff-Coste, L.; Coulhon, T., Analysis and Geometry on Groups (2008), Cambridge: Cambridge University Press, Cambridge · Zbl 1179.22009
[43] Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of computing, pp. 296-303 (1996) · Zbl 0946.60070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.