×

Equality and near-equality in a nonstandard world. (English) Zbl 1530.03025

Summary: In the context of nonstandard analysis, the somewhat vague equality relation of near-equality allows us to relate objects that are indistinguishable but not necessarily equal. This relation appears to enable us to better understand certain paradoxes, such as the paradox of Theseus’s ship, by identifying identity at a time with identity over a short period of time. With this view in mind, I propose and discuss two mathematical models for this paradox.

MSC:

03A05 Philosophical and critical aspects of logic and foundations
03H05 Nonstandard models in mathematics
Full Text: DOI

References:

[1] Bair, J., P. Błaszczyk, R. Ely, P. Heinig, and M. Katz, 2018, “ Leibniz’s wellfounded fictions and their interpetations”, Mat. Stud., 49 (2): 186-224.
[2] Bair, J., P. Błaszczyk, P. Heinig, V. Kanovei, and M. Katz, 2020, “Cauchy’s work on integral geometry, centers of curvature, and other applications of infinitesimals”, Real Analysis Exchange, 45 (1): 1-23. · Zbl 1442.01010
[3] Barnes, J., 2002, The Presocratic Philosophers, Arguments of the Philosophers, Routledge.
[4] Bascelli, T., E. Bottazzi, F. Herzberg, V. Kanovei, K. Katz, M. Katz, T. Nowik, D. Sherry, and S. Shnider, 2014, “Fermat, Leibniz, Euler, and the gang: the true history of the concepts of limit and shadow”, Notices Amer. Math. Soc., 61 (8): 848-864. · Zbl 1338.26001 · doi:10.1090/noti1149
[5] Bedürftig, T., and R. Murawski, 2018, Philosophy of Mathematics, De Gruyter. · Zbl 1397.00029
[6] Bender, S., 2019, “Is Leibniz’s principle of the identity of indiscernibles necessary or contingent?”, Philosophers’ Imprint, 19 (42).
[7] Berkeley, G., 2005, “The analyst, or a discourse addressed to an infidel mathematician”, pages 60-92 in W. Ewald (ed.), From Kant to Hilbert Volume 1: A Source Book in the Foundations of Mathematics, Oxford University Press.
[8] Black, M., 1952, “The identity of indiscernibles”, Mind, 61: 153-164.
[9] Bos, H., 1974, “Differentials, higher-order differentials and the derivative in the Leibnizian calculus”, Arch. History Exact Sci., 14: 1-90. · Zbl 0291.01016 · doi:10.1007/BF00327456
[10] Boursin, J.-L., 1983, Dicionário elementar de matemáticas modernas, Publicações Dom Quixote.
[11] Callot, J.-L., 1992, “Trois leçons d’analyse infinitésimale”, pages 369-381 in J. M. Salanskis and H. Sinaceur (eds.), Le labyrinthe du continu, Springer-Verlag, Paris. · Zbl 0769.03035
[12] Clark, M., 2012, Paradoxes from A to Z, Routledge.
[13] Cortes, A., 1976, “Leibniz’s principle of the identity of indiscernibles: A false principle”, Philosophy of Science, 43 (4): 491-505. · doi:10.1086/288707
[14] Deutsch, H. 2008, “Relative identity”, in Stanford Encyclopedia of Philosophy.
[15] di Nasso. M., 1999, “On the foundations of nonstandard mathematics”, Math. Japon., 50 (1): 131-160. · Zbl 0937.03075
[16] Diener, F., and M. Diener (eds.), 1995, Nonstandard Analysis in Practice, Universitext, Springer-Verlag, Berlin. · Zbl 0848.26015 · doi:10.1007/978-3-642-57758-1
[17] Diener, F., and G. Reeb, 1989, Analyse non standard, volume 40 of Collection Enseignement des Sciences, Hermann, Paris. · Zbl 0682.26010
[18] Dinis, B., and I. van den Berg, 2017, “Axiomatics for the external numbers of nonstandard analysis”, J. Logic & Analysis, 9(7): 1-47. · Zbl 1423.03262 · doi:10.4115/jla.2017.9.7
[19] Dinis, B., and I. van den Berg, 2019, Neutrices and External Numbers: A Flexible Number System, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL. · Zbl 1530.03004 · doi:10.1201/9780429291456
[20] Fletcher, P., K. Hrbacek, V. Kanovei, M. Katz, C. Lobry, and S. Sanders, 2017, “Approaches to analysis with infinitesimals following Robinson, Nelson, and others”, Real Anal. Exchange, 42 (2): 193-251. · Zbl 1435.03094 · doi:10.14321/realanalexch.42.2.0193
[21] French, S., 2019, “Identity and individuality in quantum theory”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, winter 2019 edition.
[22] Katz, K., and M. Katz, 2010a, “Zooming in on infinitesimal 1 - .9.. in a posttriumvirate era”, Educational Studies in Mathematics, 74 (3): 259-273.
[23] Katz, K., and M. Katz, 2010b, “When is .999... less than 1?”, The Montana Mathematics Enthusiast, 7 (1): 3-30.
[24] Katz, M., and D. Sherry, 2013, “Leibniz’s infinitesimals: their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond”, Erkenntnis, 78 (3): 571-625. · Zbl 1303.01012 · doi:10.1007/s10670-012-9370-y
[25] Kunen, K., 1980, Set Theory, vol. 102 of “Studies in Logic and the Foundations of Mathematics”, North-Holland Publishing Co., Amsterdam-New York. · Zbl 0443.03021
[26] Kusraev, A., and S. Kutateladze, 1994, Nonstandard Methods of Analysis, vol. 291 of “Mathematics and its Applications”, Kluwer Academic Publishers Group, Dordrecht. Translated from the 1990 Russian original by L. Iouzina Tarvainen. · doi:10.1007/978-94-011-1136-2
[27] Leibniz, G., 1989, Philosophical Essays, edited and translated by R. Ariew and D. Garber, Hackett Classics Series, Hackett Publishing Company.
[28] Locke, J., 2015, An Essay Concerning Human Understanding: With Thoughts On the Conduct of the Understanding, Sagwan Press.
[29] Lutz, R., 1987, Rêveries infinitésimales, Gazette des mathématiciens, 34: 79-87. · Zbl 0637.26015
[30] McGraw-Hill Dictionary of Athematics, 2003, McGraw-Hill, New York, 2nd edition.
[31] Nelson, E., 1987, Radically Elementary Probability Theory, Annals of Mathematical Studies, vol. 117, Princeton University Press, Princeton, N. J. Noonan, H., 2017, “Relative identity”, pages 1013-1032 in A Companion to the Philosophy of Language, John Wiley and Sons, Ltd. · doi:10.1002/9781118972090.ch40
[32] Potter, M., 2004, Set Theory and its Philosophy, Oxford University Press, New York. · Zbl 1066.03002 · doi:10.1093/acprof:oso/9780199269730.001.0001
[33] Quine, W., 1951, “Two dogmas of empiricism”, Philosophical Review, 60 (1): 20-43. · Zbl 0938.03527
[34] Robinson, A., 1961, “Non-standard analysis”, Nederl. Akad. Wetensch. Proc. Ser. A 64, 23: 432-440. · Zbl 0102.00708
[35] Robinson, A., 1966, Non-Standard Analysis, North-Holland Publishing Co., Amsterdam. · Zbl 0151.00803
[36] Teixeira, J., 1999, “Elliptic differential equations and their discretizations”, ProQuest LLC, Ann Arbor, MI.
[37] van den Berg, I., 1987, Nonstandard Asymptotic Analysis, Lecture notes in mathematics 1249, Springer-Verlag. · Zbl 0633.41001 · doi:10.1007/bfb0077577
[38] van der Corput, J., 1959/1960, “Introduction to the neutrix calculus”, J. Analyse Math., 7: 281-399. · Zbl 0097.10503 · doi:10.1007/bf02787689
[39] Wittgenstein, L., 1953, Philosophical Investigations, translated by G. E. M. Anscombe, The Macmillan Co., New York. · Zbl 1028.03003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.