×

Energy input influence on aerodynamic characteristics and heat flux occuring at 3D supersonic flow past a model aircraft. (Russian. English summary) Zbl 1529.76051

Summary: Numerical simulation of a viscous heat-conducting supersonic (M=2.5) three-dimensional gas flow past a model aircraft (spherically blunted cylinder with wings and tail fins) with energy input into the area in front of it is carried out. Simulations were performed using unsteady Reynolds-averaged Navier-Stokes equations (URANS) and Spalart-Allmaras (SA) turbulence model. Influence of attack angle, energy input’s parameters and placement on the model’s aerodynamic characteristics (wave drag and lift) and heat flux on its surface is determined.

MSC:

76J20 Supersonic flows
76L05 Shock waves and blast waves in fluid mechanics
76N06 Compressible Navier-Stokes equations
76F10 Shear flows and turbulence
76M99 Basic methods in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow

References:

[1] P. Iu. Georgievskii, V. A. Levin, “Sverkhzvukovoe obtekanie tel pri nalichii vneshnikh istochnikov teplovydeleniia”, Pisma v ZHTF, 14:8 (1988), 684-687
[2] P. K. Tretyakov, A. F. Garanin, G. N. Grachev, V. L. Krainev, A. G. Ponomarenko, V. N. Tishchenko, and V. I. Yakovlev, “Control of Supersonic Flow around Bodies by Means of High-Power Recurrent Optical Breakdown”, Physics-Doklady, 41:11 (1996), 566
[3] G. G. Chernyi, Gazovaia dinamika, Uchebnik dlia universitetov i vuzov, Nauka, M., 1988, 424 pp.
[4] Paul K. Chang, Separation of Flow, Pergamon, New York, 1970 · Zbl 0255.76040
[5] A. Sasoh, Y. Sekiya, T. Sakai, J. H. Kim, A. Matsuda, “Supersonic Drag Reduction with Repetitive Laser Pulses Through a Blunt Body”, AIAA Journal, 48:12 (2010), 2811-2817 · doi:10.2514/1.J050174
[6] E. Erdem, K. Kontis, L. Yang, “Steady energy deposition at Mach 5 for drag reduction”, Shock Waves, 23 (2013), 285-298
[7] E. Schulein, A. Zheltovodov, “Effects of steady flow heating by arc discharge upstream of non-slender bodies”, Shock Waves, 21 (2011), 383-396 · doi:10.1007/s00193-011-0307-1
[8] Yu. F. Kolesnichenko, V. G. Brovkin, O. A. Azarova, V. G. Grudnitsky, V. A. Laskov, I. Ch. Mashek, 41st Aerospace Science Meeting and Exhibit, AIAA Paper 2003-361 (Reno, Nevada, USA, 6-9 Jan. 2003), 11 pp.
[9] S. M. Aulchenko, V. P. Zamuraev, A. P. Kalinina, “Effect of one-sided unsteady energy supply on aerodynamic characteristics of airfoils in a transonic flow”, Journal of Applied Mechanics and Technical Physics, 49 (2008), 957-961 · doi:10.1007/s10808-008-0118-z
[10] V. A. Levin, L. V. Terent’eva, Sverkhzvukovoe obtekanie tonkogo profilia pri nalichii energovydeleniia v okrestnosti ego poverkhnosti, Otchet Instituta mekhaniki MGU № 4315, 1994, 42 pp.
[11] S. Leonov, V. Bityurin, A. Yuriev, S. Pirogov, B. Zhukov, 41st Aerospace Science Meeting and Exhibit, AIAA Paper 2003-35 (Reno, Nevada, USA, 6-9 Jan. 2003), 8 pp.
[12] P. Yu. Georgievskii, V. A. Levin, “Control of the Flow Past Bodies Using Localized Energy Addition to the Supersonic Oncoming Flow”, Fluid Dynamics, 38:5, September (2003), 794-805 · Zbl 1067.76504 · doi:10.1023/B:FLUI.0000007841.91654.10
[13] O. Azarova, D. Knight, Y. Kolesnichenko, “Pulsating stochastic flows accompanying microwave filament/supersonic shock layer interaction”, Shock Waves, 21 (2011), 439-450 · doi:10.1007/s00193-011-0319-x
[14] P. Y. Georgievsky, V. A. Levin, 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper № 1232, 2007
[15] V. Levin, N. Afonina, V. Gromov, “Heat exchange control on sphere surface using local energy input”, Physical-Chemical Kinetics in Gas Dynamics, 10 (2010)
[16] P.-Q. Elias, Numerical Simulations on the Effect and Efficiency of Long Linear Energy Deposition Ahead of a Supersonic Blunt Body: Toward a Laser Spike, № 10, Aerospace Lab, 2015
[17] V. A. Levin, V. G. Gromov, N. E. Afonina, “Numerical analysis of the effect of local energy supply on the aerodynamic drag and heat transfer of a spherically blunted body in a supersonic air flow”, Journal of Applied Mechanics and Technical Physics, 41:5, September-October (2000), 915-922 · Zbl 1074.80500 · doi:10.1007/BF02468738
[18] R. Kandala, G. V. Candler, “Numerical Studies of Laser-Induced Energy Deposition for Supersonic Flow Control”, AIAA Journal, 42:11 (2004), 2266-2275 · doi:10.2514/1.6817
[19] K. Satheesh, G. Jagadeesh, “Experimental investigations on the effect of energy deposition in hypersonic blunt body flow field”, Shock Waves, 18 (2008), 53-70 · doi:10.1007/s00193-008-0140-3
[20] L. V. Bykov, A. M. Molchanov, M. A. Shcherbakov, D. S. Yanyshev, Vychislitelnaia mekhanika sploshnykh sred v zadachakh aviatsionnoi i kosmicheskoi tekhniki, LENAND, M., 2015, 688 pp.
[21] S. R. Allmaras, F. T. Johnson, P. R. Spalart, “Modifications and Clarifications for the Imple-mentation of the Spalart-Allmaras Turbulence Model”, Seventh International Conference on CFD (ICCFD7) (Big Island, Hawaii, 9-13 July 2012)
[22] J. R. Edwards, S. Chandra, “Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields”, AIAA Journal, 34:4 (1996), 756-763 · doi:10.2514/3.13137
[23] S. V. Guvernyuk, K. G. Savinov, “Isobaric separation structures in supersonic flows with a localized inhomogeneity”, Doklady Physics, 52 (2007), 151-155 · doi:10.1134/S1028335807030068
[24] A. L. Afendikov, Y. V. Khankhasaeva, A. E. Lutsky et al, “Numerical Simulation of the Recirculation Flow during the Supersonic Separation of Moving Bodies”, Math. Models & Comput. Simul., 12 (2020), 282-292 · doi:10.1134/S2070048220030035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.