×

Bending and wave propagation analysis of axially functionally graded beams based on a reformulated strain gradient elasticity theory. (English) Zbl 1529.74042


MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74E05 Inhomogeneity in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74M25 Micromechanics of solids
74B99 Elastic materials
74S99 Numerical and other methods in solid mechanics
Full Text: DOI

References:

[1] Ma, H. M.; Gao, X. L.; Reddy, J. N., A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, 56, 12, 3379-3391 (2008) · Zbl 1171.74367 · doi:10.1016/j.jmps.2008.09.007
[2] Reddy, J. N., Microstructure-dependent couple stress theories of functionally graded beams, Journal of the Mechanics and Physics of Solids, 59, 11, 2382-2399 (2011) · Zbl 1270.74114 · doi:10.1016/j.jmps.2011.06.008
[3] Liu, J.; He, B.; Ye, W.; Yang, F., High performance model for buckling of functionally graded sandwich beams using a new semi-analytical method, Composite Structures, 262, 113614 (2021) · doi:10.1016/j.compstruct.2021.113614
[4] Li, X.; Li, L.; Hu, Y.; Ding, Z.; Deng, W., Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory, Composite Structures, 165, 250-265 (2017) · doi:10.1016/j.compstruct.2017.01.032
[5] Gorgani, H. H.; Adeli, M. M.; Hosseini, M., Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches, Microsystem Technologies, 25, 3165-3173 (2019) · doi:10.1007/s00542-018-4216-4
[6] Hosseini, M.; Khoram, M. M.; Hosseini, M.; Shishesaz, M., A concise review of nano-plates, Journal of Computational Applied Mechanics, 50, 2, 420-429 (2019)
[7] Zhang, K.; Ge, M. H.; Zhao, C.; Deng, Z. C.; Xu, X. J., Free vibration of nonlocal Timoshenko beams made of functionally graded materials by symplectic method, Composites Part B: Engineering, 156, 174-184 (2019) · doi:10.1016/j.compositesb.2018.08.051
[8] Hong, J.; Wang, S. P.; Zhang, G. Y.; Mi, C. W., Bending, buckling and vibration analysis of complete microstructure-dependent functionally graded material microbeams, International Journal of Applied Mechanics, 13, 5, 2150057 (2021) · doi:10.1142/S1758825121500575
[9] Zhang, P.; Schiavone, P.; Qing, H., Unified two-phase nonlocal formulation for vibration of functionally graded beams resting on nonlocal viscoelastic Winkler-Pasternak foundation, Applied Mathematics and Mechanics (English Edition), 44, 1, 89-108 (2023) · Zbl 1514.74042 · doi:10.1007/s10483-023-2948-9
[10] Yu, T. T.; Yin, S. H.; Bui, T. Q.; Liu, C.; Wattanasakulpong, N., Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads, Composite Structures, 162, 54-69 (2017) · doi:10.1016/j.compstruct.2016.11.084
[11] Huang, Y.; Yang, L. E.; Luo, Q. Z., Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section, Composites Part B: Engineering, 45, 1, 1493-1498 (2013) · doi:10.1016/j.compositesb.2012.09.015
[12] Ghayesh, M. H., Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams, Applied Mathematical Modelling, 59, 583-596 (2018) · Zbl 1480.74107 · doi:10.1016/j.apm.2018.02.017
[13] Lin, X.; Huang, Y.; Zhao, Y.; Wang, T. S., Large deformation analysis of a cantilever beam made of axially functionally graded material by homotopy analysis method, Applied Mathematics and Mechanics (English Edition), 40, 10, 1375-1386 (2019) · Zbl 1431.74067 · doi:10.1007/s10483-019-2515-9
[14] Faroughi, S.; Rahmani, A.; Friswell, M. I., On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model, Applied Mathematical Modelling, 80, 169-190 (2020) · Zbl 1481.74375 · doi:10.1016/j.apm.2019.11.040
[15] Zhu, C. S.; Fang, X. Q.; Liu, J. X., Surface energy effect on buckling behavior of the functionally graded nano-shell covered with piezoelectric nano-layers under torque, International Journal of Mechanical Sciences, 133, 662-673 (2017) · doi:10.1016/j.ijmecsci.2017.09.036
[16] Qu, Y. L.; Jin, F.; Zhang, G. Y., Mechanically induced electric and magnetic fields in the bending and symmetric-shear deformations of a microstructure-dependent FG-MEE composite beam, Composite Structures, 278, 114554 (2021) · doi:10.1016/j.compstruct.2021.114554
[17] Lam, D. C C.; Yang, F.; Chong, A. C M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51, 8, 1477-1508 (2003) · Zbl 1077.74517 · doi:10.1016/S0022-5096(03)00053-X
[18] Mcfarland, A. W.; Colton, J. S., Role of material microstructure in plate stiffness with relevance to microcantilever sensors, Journal of Micromechanics and Microengineering, 15, 5, 1060-1067 (2005) · doi:10.1088/0960-1317/15/5/024
[19] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 9, 4703-4710 (1983) · doi:10.1063/1.332803
[20] Mindlin, R. D., Influence of couple-stresses on stress concentrations, Experimental Mechanics, 3, 1-7 (1963) · doi:10.1007/BF02327219
[21] Kolter, W. T., Couple stresses in the theory of elasticity, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen/B, 67, 17-44 (1964) · Zbl 0119.39504
[22] Mindlin, R. D., Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, 16, 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[23] Mindlin, R. D.; Eshel, N. N., On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, 4, 1, 109-124 (1968) · Zbl 0166.20601 · doi:10.1016/0020-7683(68)90036-X
[24] Polizzotto, C., A hierarchy of simplified constitutive models within isotropic strain gradient elasticity, European Journal of Mechanics-A/Solids, 61, 92-109 (2017) · Zbl 1406.74090 · doi:10.1016/j.euromechsol.2016.09.006
[25] Altan, B. S.; Aifantis, E. C., On some aspects in the special theory of gradient elasticity, Journal of the Mechanical Behavior of Materials, 8, 3, 231-282 (1997) · doi:10.1515/JMBM.1997.8.3.231
[26] Yang, F.; Chong, A. C M.; Lam, D. C C.; Tong, P., Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structure, 39, 10, 2731-2743 (2002) · Zbl 1037.74006 · doi:10.1016/S0020-7683(02)00152-X
[27] Park, S. K.; Gao, X. L., Variational formulation of a modified couple stress theory and its application to a simple shear problem, Zeitschrift für Angewandte Mathematik und Physik, 59, 904-917 (2008) · Zbl 1157.74014 · doi:10.1007/s00033-006-6073-8
[28] Zhang, G. Y.; Gao, X. L., A new Bernoulli-Euler beam model based on a reformulated strain gradient elasticity theory, Mathematics and Mechanics of Solids, 25, 3, 630-643 (2020) · Zbl 1446.74156 · doi:10.1177/1081286519886003
[29] Qu, Y. L.; Zhang, G. Y.; Fan, Y. M.; Jin, F., A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I, reconsideration of curvature-based flexoelectricity theory, Mathematics and Mechanics of Solids, 26, 1, 1647-1659 (2021) · Zbl 07589909 · doi:10.1177/10812865211001533
[30] Şimşek, M., Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods, Computational Materials Science, 61, 257-265 (2012) · doi:10.1016/j.commatsci.2012.04.001
[31] Shafiei, N.; Kazemi, M.; Safi, M.; Ghadiri, M., Nonlinear vibration of axially functionally graded non-uniform nanobeams, International Journal of Engineering Science, 106, 77-94 (2016) · doi:10.1016/j.ijengsci.2016.05.009
[32] Lim, C. W.; Zhang, G.; Reddy, J. N., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, 78, 298-313 (2015) · Zbl 1349.74016 · doi:10.1016/j.jmps.2015.02.001
[33] Rajasekaran, S.; Khaniki, H. B., Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory, Mechanics of Advanced Materials and Structures, 26, 14, 1245-1259 (2019) · doi:10.1080/15376494.2018.1432797
[34] Hong, J.; Wang, S. P.; Zhang, G. Y.; Mi, C. W., On the bending and vibration analysis of functionally graded magneto-electro-elastic Timoshenko microbeams, Crystals, 11, 10, 1206 (2021) · doi:10.3390/cryst11101206
[35] Hong, J.; Wang, S. P.; Qiu, X. Y.; Zhang, G. Y., Bending and wave propagation analysis of magneto-electro-elastic functionally graded porous microbeams, Crystals, 12, 5, 732 (2022) · doi:10.3390/cryst12050732
[36] Hong, J.; He, Z. Z.; Zhang, G. Y.; Mi, C. W., Size and temperature effects on band gaps in periodic fluid-filled micropipes, Applied Mathematics and Mechanics (English Edition), 42, 9, 1219-1232 (2021) · doi:10.1007/s10483-021-2769-8
[37] Zhang, G. Y.; Zheng, C. Y.; Mi, C. W.; Gao, X. L., A microstructure-dependent Kirchhoff plate model based on a reformulated strain gradient elasticity theory, Mechanics of Advanced Materials and Structures, 29, 17, 2521-2530 (2021) · doi:10.1080/15376494.2020.1870054
[38] Şimşek, M.; Kocatürk, T.; Akbaş, Ş. D D., Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load, Composite Structures, 94, 8, 2358-2364 (2012) · doi:10.1016/j.compstruct.2012.03.020
[39] Ma, H. M.; Gao, X. L.; Reddy, J. N., A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, 56, 12, 3379-3391 (2008) · Zbl 1171.74367 · doi:10.1016/j.jmps.2008.09.007
[40] Papargyri-Beskou, S.; Polyzos, D.; Beskos, D. E., Wave dispersion in gradient elastic solids and structures: a unified treatment, International Journal of Solids and Structures, 46, 21, 3751-3759 (2009) · Zbl 1176.74101 · doi:10.1016/j.ijsolstr.2009.05.002
[41] Reddy, J. N., Energy Principles and Variational Methods in Applied Mechanics (2002), New Jersey: Wiley, New Jersey
[42] Gao, X. L.; Mall, S., Variational solution for a cracked mosaic model of woven fabric composites, International Journal of Solids and Structures, 38, 5, 855-874 (2001) · Zbl 1045.74019 · doi:10.1016/S0020-7683(00)00047-0
[43] Atlihan, G.; Demir, E.; Girgin, Z.; Çallioğlu, H., Free vibration and buckling analysis of the laminated composite beams by using GDQM, Advanced Composites Letters, 18, 2, 37-44 (2009) · doi:10.1177/096369350901800201
[44] Wang, P.; Gao, Z.; Pan, F.; Moradi, Z.; Mahmoudi, T.; Khadimallah, M. A., A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bi-directional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory, Engineering Analysis with Boundary Elements, 143, 124-136 (2022) · Zbl 1521.74067 · doi:10.1016/j.enganabound.2022.06.007
[45] Shafiei, N.; Mirjavadi, S. S.; Mohaselafshari, B.; Rabby, S.; Kazemi, M., Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams, Computer Methods in Applied Mechanics and Engineering, 322, 615-632 (2017) · Zbl 1439.74139 · doi:10.1016/j.cma.2017.05.007
[46] Ohab-Yazdi, S. M K.; Kadkhodayan, M., Free vibration of bi-directional functionally graded imperfect nanobeams under rotational velocity, Aerospace Science and Technology, 119, 107210 (2021) · doi:10.1016/j.ast.2021.107210
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.