×

The efficient ADI Galerkin finite element methods for the three-dimensional nonlocal evolution problem arising in viscoelastic mechanics. (English) Zbl 1529.65082

Summary: In this article, we investigate and analyze new methods for the numerical solution of the three-dimensional nonlocal evolution problem arising in viscoelastic mechanics. Then these methods combine Galerkin finite element methods (FEMs) for the spatial discretization with corresponding alternating direction implicit (ADI) algorithms, based on the backward Euler (BE) method and Crank-Nicolson (CN) method, respectively, from which, the Riemann-Liouville (R-L) integral term is approximated by relevant convolution quadrature rules. The \(L^2\)-norm stability and convergence of two ADI Galerkin schemes are proved by the energy argument. Numerical results confirm the predicted space-time convergence orders.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D30 Numerical integration
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
76A10 Viscoelastic fluids
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74D05 Linear constitutive equations for materials with memory
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] C. V. L. B. Chen Thomée Wahlbin, Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Math. Comput., 58, 587-602 (1992) · Zbl 0766.65120 · doi:10.2307/2153204
[2] E. C. Cuesta Palencia, A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces, Appl. Numer. Math., 45, 139-159 (2003) · Zbl 1023.65151 · doi:10.1016/S0168-9274(02)00186-1
[3] J. E. Dendy, An analysis of some Galerkin schemes for the solution of nonlinear time dependent problems, SIAM J. Numer. Anal., 12, 541-565 (1975) · Zbl 0338.65052 · doi:10.1137/0712042
[4] R. I. G. Fernandes Fairweather, An alternating direction Galerkin method for a class of second-order hyperbolic equations in two space variables, SIAM J. Numer. Anal., 28, 1265-1281 (1991) · Zbl 0747.65082 · doi:10.1137/0728067
[5] X.-M. S.-L. Gu Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417, 109576 (2020) · Zbl 1437.65237 · doi:10.1016/j.jcp.2020.109576
[6] D. K. H. He Pan Hu, A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation, Appl. Numer. Math., 151, 44-63 (2020) · Zbl 1434.65117 · doi:10.1016/j.apnum.2019.12.018
[7] S. V. L. B. Larsson Thomée Wahlbin, Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin methods, Math. Comput., 67, 45-71 (1998) · Zbl 0896.65090 · doi:10.1090/S0025-5718-98-00883-7
[8] L. D. Li Xu, Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation, J. Comput. Phys., 255, 471-485 (2013) · Zbl 1349.65456 · doi:10.1016/j.jcp.2013.08.031
[9] L. D. Li Xu, Alternating direction implicit Galerkin finite element method for the two-dimensional time fractional evolution equation, Numer. Math.-Theory Methods Appl., 7, 41-57 (2014) · Zbl 1313.65266
[10] H.-L. Z.-Z. Liao Sun, Maximum error estimates of ADI and compact ADI methods for solving parabolic equations, Numer. Meth. Part Differ. Equ., 26, 37-60 (2010) · Zbl 1196.65154 · doi:10.1002/num.20414
[11] J. C. López-Marcos, A difference scheme for a nonlinear partial integro-differential equation, SIAM J. Numer. Anal., 27, 20-31 (1990) · Zbl 0693.65097 · doi:10.1137/0727002
[12] C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17, 704-719 (1986) · Zbl 0624.65015 · doi:10.1137/0517050
[13] C. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math., 52, 129-145 (1988) · Zbl 0637.65016 · doi:10.1007/BF01398686
[14] W. K. McLean Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math., 105, 481-510 (2007) · Zbl 1111.65113 · doi:10.1007/s00211-006-0045-y
[15] W. V. Mclean Thomée, Numerical solution of an evolution equation with a positive type memory term, J. Aust. Math. Soc. Ser. B, 35, 23-70 (1993) · Zbl 0791.65105 · doi:10.1017/S0334270000007268
[16] I. Podlubny, Fractional Differential Equations (1999) · Zbl 0924.34008
[17] L. J. W. Qiao Guo Qiu, Fast BDF2 ADI methods for the multi-dimensional tempered fractional integrodifferential equation of parabolic type, Comput. Math. Appl., 123, 89-104 (2022) · Zbl 1524.65385 · doi:10.1016/j.camwa.2022.08.014
[18] L. W. D. Qiao Qiu Xu, A second-order ADI difference scheme based on non-uniform meshes for the three-dimensional nonlocal evolution problem, Comput. Math. Appl., 102, 137-145 (2021) · Zbl 1524.65386 · doi:10.1016/j.camwa.2021.10.014
[19] L. D. Qiao Xu, BDF ADI orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels, Comput. Math. Appl., 78, 3807-3820 (2019) · Zbl 1443.65250 · doi:10.1016/j.camwa.2019.06.002
[20] L. D. W. Qiao Xu Qiu, The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space, Appl. Numer. Math., 172, 359-381 (2022) · Zbl 1484.65345 · doi:10.1016/j.apnum.2021.10.021
[21] W. D. H. Qiu Xu Chen, A formally second-order BDF finite difference scheme for the integro-differential equations with the multi-term kernels, Int. J. Comput. Math., 97, 2055-2073 (2020) · Zbl 1483.65226 · doi:10.1080/00207160.2019.1677896
[22] W. D. H. J. Qiu Xu Chen Guo, An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions, Comput. Math. Appl., 80, 3156-3172 (2020) · Zbl 1524.65584 · doi:10.1016/j.camwa.2020.11.003
[23] W. D. J. Qiu Xu Guo, A formally second-order backward differentiation formula Sinc-collocation method for the Volterra integro-differential equation with a weakly singular kernel based on the double exponential transformation, Numer. Meth. Part Differ. Equ., 38, 830-847 (2022) · Zbl 1533.65198 · doi:10.1002/num.22703
[24] I. H. V. Sloan Thomée, Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal., 23, 1052-1061 (1986) · Zbl 0608.65096 · doi:10.1137/0723073
[25] T. Tang, A finite difference scheme for a partial integro-differential equation with a weakly singular kernel, Appl. Numer. Math., 11, 309-319 (1993) · Zbl 0768.65093 · doi:10.1016/0168-9274(93)90012-G
[26] Z. D. Y. Wang Cen Mo, Sharp error estimate of a compact L1-ADI scheme for the two-dimensional time-fractional integro-differential equation with singular kernels, Appl. Numer. Math., 159, 190-203 (2021) · Zbl 1459.65160 · doi:10.1016/j.apnum.2020.09.006
[27] D. Xu, The global behavior of time discretization for an abstract Volterra equation in Hilbert space, Calcolo, 34, 71-104 (1997) · Zbl 0913.65138
[28] D. Xu, On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel, I: Smooth initial data, Appl. Math. Comput., 58, 1-27 (1993) · Zbl 0782.65160
[29] D. Xu, On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel, II: Nonsmooth initial data, Appl. Math. Comput., 58, 29-60 (1993) · Zbl 0782.65161 · doi:10.1016/0096-3003(93)90011-3
[30] D. Xu, Observability inequalities for hermite bi-cubic orthogonal spline collocation methods of 2-D integro-differential equations in the square domains, Appl. Math. Optim., 84, 1341-1372 (2021) · Zbl 1481.65240 · doi:10.1007/s00245-020-09680-5
[31] X. W. H. L. Yang Qiu Zhang Tang, An efficient alternating direction implicit finite difference scheme for the three-dimensional time-fractional telegraph equation, Comput. Math. Appl., 102, 233-247 (2021) · Zbl 1524.65430 · doi:10.1016/j.camwa.2021.10.021
[32] E. G. G. Yanik Fairweather, Finite element methods for parabolic and hyperbolic partial integrodifferential equations, Nonlinear Anal., 12, 785-809 (1988) · Zbl 0657.65142 · doi:10.1016/0362-546X(88)90039-9
[33] Y. Z. Zhang Sun, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys., 230, 8713-8728 (2011) · Zbl 1242.65174 · doi:10.1016/j.jcp.2011.08.020
[34] Y. Z. X. Zhang Sun Zhao, Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM J. Numer. Anal., 50, 1535-1555 (2012) · Zbl 1251.65126 · doi:10.1137/110840959
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.