×

Probabilistic and analytical aspects of the symmetric and generalized Kaiser-Bessel window function. (English) Zbl 1529.60023

Summary: The generalized Kaiser-Bessel window function is defined via the modified Bessel function of the first kind and arises frequently in tomographic image reconstruction. In this paper, we study in details the properties of the Kaiser-Bessel distribution, which we define via the symmetric form of the generalized Kaiser-Bessel window function. The Kaiser-Bessel distribution resembles to the Bessel distribution of McKay of the first type, it is a platykurtic or sub-Gaussian distribution, it is not infinitely divisible in the classical sense and it is an extension of the Wigner’s semicircle, parabolic and \(n\)-sphere distributions, as well as of the ultra-spherical (or hyper-spherical) and power semicircle distributions. We deduce the moments and absolute moments of this distribution and we find its characteristic and moment generating function in two different ways. In addition, we find its cumulative distribution function in three different ways and we deduce a recurrence relation for the moments and absolute moments. Moreover, by using a formula of Ismail and May on quotient of modified Bessel functions of the first kind, we deduce a closed-form expression for the differential entropy. We also prove that the Kaiser-Bessel distribution belongs to the family of log-concave and geometrically concave distributions, and we study in details the monotonicity and convexity properties of the probability density function with respect to the argument and each of the parameters. In the study of the monotonicity with respect to one of the parameters we complement a known result of Gronwall concerning the logarithmic derivative of modified Bessel functions of the first kind. Finally, we also present a modified method of moments to estimate the parameters of the Kaiser-Bessel distribution, and by using the classical rejection method we present two algorithms for sampling independent continuous random variables of Kaiser-Bessel distribution. The paper is closed with conclusions and proposals for future works.

MSC:

60E05 Probability distributions: general theory
60E10 Characteristic functions; other transforms
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
44A20 Integral transforms of special functions
39B62 Functional inequalities, including subadditivity, convexity, etc.

References:

[1] Alexandrov, MD; Lacis, AA, A new three-parameter cloud/aerosol particle size distribution based on the generalized inverse Gaussian density function, Appl. Math. Comput., 116, 1-2, 153-165 (2000) · Zbl 1026.78008
[2] Amos, DE, Computation of modified Bessel functions and their ratios, Math. Comput., 28, 239-251 (1974) · Zbl 0277.65006 · doi:10.1090/S0025-5718-1974-0333287-7
[3] András, S.; Baricz, Á., Properties of the probability density function of the non-central chi-squared distribution, J. Math. Anal. Appl., 346, 2, 395-402 (2008) · Zbl 1145.60010 · doi:10.1016/j.jmaa.2008.05.074
[4] Appell, P.; Kampé de Fériet, J., Fonctions Hypergéométrique et Hypersphérique. Polynomes d’Hermite (1926), Paris: Gautier-Villars et Cie, Paris · JFM 52.0361.13
[5] Arizmendi, O.; Belinschi, ST, Free infinite divisibility for ultrasphericals, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16, 1, 1350001 (2013) · Zbl 1281.46055 · doi:10.1142/S021902571350001X
[6] Arizmendi, O.; Pérez-Abreu, V., On the non-classical infinite divisibility of power semicircle distributions, Commun. Stoch. Anal., 4, 2, 161-178 (2010) · Zbl 1331.60031
[7] Avci, K.; Nacaroglu, A., Cosh window family and its application to FIR filter design, J. Electron. Commun., 63, 907-916 (2009)
[8] Avkhadiev, FG, A simple proof of the Gauss-Winckler inequality, Am. Math. Mon., 112, 5, 459-462 (2005) · Zbl 1124.26012 · doi:10.1080/00029890.2005.11920215
[9] Bagnoli, M.; Bergstrom, T., Log-concave probability and its applications, Econom. Theory, 26, 2, 445-469 (2005) · Zbl 1077.60012 · doi:10.1007/s00199-004-0514-4
[10] Baricz, Á., Tight bounds for the generalized Marcum \(Q\)-function, J. Math. Anal. Appl., 360, 1, 265-277 (2009) · Zbl 1190.33005 · doi:10.1016/j.jmaa.2009.06.055
[11] Baricz, Á., Turán type inequalities for modified Bessel functions, Bull. Aust. Math. Soc., 82, 2, 254-264 (2010) · Zbl 1206.33007 · doi:10.1017/S000497271000002X
[12] Baricz, Á., Bounds for modified Bessel functions of the first and second kinds, Proc. Edinb. Math. Soc., 53, 3, 575-599 (2010) · Zbl 1202.33008 · doi:10.1017/S0013091508001016
[13] Baricz, Á., Powers of modified Bessel functions of the first kind, Appl. Math. Lett., 23, 722-724 (2010) · Zbl 1188.33010 · doi:10.1016/j.aml.2010.02.015
[14] Baricz, Á., Geometrically concave univariate distributions, J. Math. Anal. Appl., 363, 1, 182-196 (2010) · Zbl 1185.60011 · doi:10.1016/j.jmaa.2009.08.029
[15] Baricz, Á., Bounds for Turánians of modified Bessel functions, Expo. Math., 33, 223-251 (2015) · Zbl 1316.33002 · doi:10.1016/j.exmath.2014.07.001
[16] Beesack, PR, Inequalities for absolute moments of a distribution: from Laplace to von Mises, J. Math. Anal. Appl., 98, 2, 435-457 (1984) · Zbl 0534.60018 · doi:10.1016/0022-247X(84)90260-9
[17] Bhattacharyya, BC, The use of McKay’s Bessel function curves for graduating frequency distributions, Sankhyā, 6, 175-182 (1942) · Zbl 0063.00369
[18] Bordelon, DJ, Problem 72-15, inequalities for special functions, SIAM Rev., 15, 665-668 (1973) · doi:10.1137/1015083
[19] Cabello, J.; Rafecas, M., Comparison of basis functions for 3D PET reconstruction using a Monte Carlo system matrix, Phys. Med. Biol., 57, 1759-1777 (2012) · doi:10.1088/0031-9155/57/7/1759
[20] Cochran, JA, The monotonicity of modified Bessel functions with respect to their order, J. Math. Phys., 46, 220-222 (1967) · Zbl 0155.39501 · doi:10.1002/sapm1967461220
[21] Corona, P.; Ferrara, G.; Migliaccio, M., Generalized stochastic field model for reverberating chambers, IEEE Trans. Electromagn. Compat., 46, 655-660 (2004) · doi:10.1109/TEMC.2004.837831
[22] Desbiens, R.; Tremblay, P., A new efficient approach to the design of parametric windows with arbitrary sidelobe profiles, Signal Process., 86, 11, 3226-3239 (2006) · Zbl 1172.94399 · doi:10.1016/j.sigpro.2006.01.011
[23] Devroye, L., Non-uniform Random Variate Generation (1986), New York: Springer, New York · Zbl 0593.65005 · doi:10.1007/978-1-4613-8643-8
[24] Diaconis, P.; Freedman, D., A dozen de Finetti-style results, in search of a theory, Ann. Inst. Henry Poincaré, 23, 2, 397-423 (1987) · Zbl 0619.60039
[25] Elbert, Á., Concavity of the zeros of Bessel functions, Stud. Sci. Math. Hung., 12, 81-88 (1977) · Zbl 0435.33006
[26] Eltoft, T., Modeling the amplitude statistics of ultrasonic images, IEEE Trans. Med. Imaging, 25, 229-240 (2006) · doi:10.1109/TMI.2005.862664
[27] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, FG, Tables of Integral Transforms (1954), New York: McGraw-Hill Book Company, New York · Zbl 0055.36401
[28] Gronwall, TH, An inequality for the Bessel functions of the first kind with imaginary argument, Ann. Math., 33, 2, 275-278 (1932) · Zbl 0004.21101 · doi:10.2307/1968329
[29] Hansen, JE; Travis, LD, Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527-610 (1974) · doi:10.1007/BF00168069
[30] Hoeffding, W., Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc., 58, 13-30 (1963) · Zbl 0127.10602 · doi:10.1080/01621459.1963.10500830
[31] Hornik, K.; Grün, B., Amos-type bounds for modified Bessel function ratios, J. Math. Anal. Appl., 408, 91-101 (2013) · Zbl 1309.33011 · doi:10.1016/j.jmaa.2013.05.070
[32] Ismail, MEH; May, P., Special functions, infinite divisibility and transcendental equations, Math. Proc. Camb. Philos. Soc., 85, 453-464 (1979) · Zbl 0396.60021 · doi:10.1017/S0305004100055912
[33] Ismail, MEH; Zhang, R., On the Hellmann-Feynman theorem and the variation of zeros of certain special functions, Adv. Appl. Math., 9, 439-446 (1988) · Zbl 0684.33004 · doi:10.1016/0196-8858(88)90022-X
[34] Jankov Maširević, D.; Pogány, TK, On new formulae for cumulative distribution function for McKay Bessel distribution, Commun. Statist. Theory Methods, 50, 1, 143-160 (2021) · Zbl 07532111 · doi:10.1080/03610926.2019.1632898
[35] Joshi, CM; Bissu, SK, Some inequalities of Bessel and modified Bessel functions, J. Austral. Math. Soc. Ser. A, 50, 2, 333-342 (1991) · Zbl 0732.33002 · doi:10.1017/S1446788700032791
[36] Joshi, CM; Bissu, SK, Inequalities for some special functions, J. Comput. Appl. Math., 69, 2, 251-259 (1996) · Zbl 0865.33003 · doi:10.1016/0377-0427(95)00042-9
[37] Kaiser, J.F.: Nonrecursive digital filter design using the \(I_0-sinh\) window function. In: Proceedings of the IEEE International Symposium on Circuits & Systems, San Francisco, CA, USA (1974)
[38] Kalmykov, SI; Karp, DB, Log-concavity for series in reciprocal gamma functions and applications, Integr. Transforms Spec. Funct., 24, 11, 859-872 (2013) · Zbl 1286.26008 · doi:10.1080/10652469.2013.764874
[39] Kingman, JFC, Random walks with spherical symmetry, Acta Math., 109, 11-53 (1963) · Zbl 0121.12803 · doi:10.1007/BF02391808
[40] Lewis, JT; Muldoon, ME, Monotonicity and convexity properties of zeros of Bessel functions, SIAM J. Math. Anal., 8, 171-178 (1977) · Zbl 0365.33004 · doi:10.1137/0508012
[41] Lewitt, RM, Multidimensional digital image representations using generalized Kaiser-Bessel window functions, J. Opt. Soc. Am. A, 7, 10, 1834-1846 (1990) · doi:10.1364/JOSAA.7.001834
[42] Lewitt, RM, Alternatives to voxels for image representation in iterative reconstruction algorithms, Phys. Med. Biol., 37, 3, 705-716 (1992) · doi:10.1088/0031-9155/37/3/015
[43] Lorch, L., Turánians and Wronskians for the zeros of Bessel functions, SIAM J. Math. Anal., 11, 2, 223-227 (1980) · Zbl 0446.33011 · doi:10.1137/0511021
[44] Lorch, L., Monotonicity of the zeros of a cross-product of Bessel functions, Methods Appl. Anal., 1, 1, 75-80 (1994) · Zbl 0840.33002 · doi:10.4310/MAA.1994.v1.n1.a6
[45] Lukacs, E., Characteristic Functions (1979), Moscow: Nauka, Moscow · Zbl 0516.60017
[46] Matej, S.; Lewitt, RM, Practical considerations for 3D image reconstruction using spherically symmetric volume elements, IEEE Trans. Med. Imaging, 15, 68-78 (1996) · doi:10.1109/42.481442
[47] McKay, AT, A Bessel function distribution, Biometrika, 24, 39-44 (1932) · Zbl 0004.40804 · doi:10.1093/biomet/24.1-2.39
[48] McNolty, F., Some probability density functions and their characteristic functions, Math. Comput., 27, 495-504 (1973) · Zbl 0282.65026 · doi:10.1090/S0025-5718-1973-0329193-3
[49] McLeish, DL, A robust alternative to the normal distributions, Can. J. Statist., 10, 2, 89-102 (1982) · Zbl 0495.62039 · doi:10.2307/3314901
[50] Muraki, N., The five independences as quasi-universal products, Infin. Dimen. Anal. Quant. Probab. Relat. Top., 5, 113-134 (2002) · Zbl 1055.46514 · doi:10.1142/S0219025702000742
[51] Nanthanasub, T., Novaprateep, B., Wichailukkana, N., Narongpol: The logarithmic concavity of modified Bessel functions of the first kind and its related functions. Adv. Differ. Equ. (2019). Art. 379 · Zbl 1459.33005
[52] Nilchian, M.; Ward, JP; Vonesh, C.; Unser, M., Optimized Kaiser-Bessel window functions for computed tomography, IEEE Trans. Image Process., 24, 11, 3826-3833 (2015) · Zbl 1408.94511 · doi:10.1109/TIP.2015.2451955
[53] Paris, RB, An inequality for the Bessel function \(J_\nu (\nu x)\), SIAM J. Math. Anal., 15, 1, 203-205 (1984) · doi:10.1137/0515016
[54] Poudel, J.; Lou, Y.; Anastasio, MA, A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography, Phys. Med. Biol., 64, 14TR01 (2019) · doi:10.1088/1361-6560/ab2017
[55] Prabhu, KMM, Window Functions and Their Applications in Signal Processing (2014), Boca Raton: CRC Press, Boca Raton
[56] Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. University of California Press, Berkeley, CA, pp. 547-561 (1961) · Zbl 0106.33001
[57] Ross, DK, Problem 72-15, inequalities for special functions, SIAM Rev., 15, 668-670 (1973)
[58] Segura, J., Bounds for ratios of modified Bessel functions and associated Turán-type inequalities, J. Math. Anal. Appl., 374, 516-528 (2011) · Zbl 1207.33009 · doi:10.1016/j.jmaa.2010.09.030
[59] Segura, J., Sharp bounds for cumulative distribution functions, J. Math. Anal. Appl., 436, 748-763 (2016) · Zbl 1398.60037 · doi:10.1016/j.jmaa.2015.12.024
[60] Simpson, HC; Spector, SJ, Some monotonicity results for ratios of modified Bessel functions, Quart. Appl. Math., 42, 95-98 (1984) · Zbl 0549.33008 · doi:10.1090/qam/736509
[61] Simpson, HC; Spector, SJ, On barelling for a special material in finite elasticity, Q. Appl. Math., 42, 99-105 (1984) · Zbl 0538.73048 · doi:10.1090/qam/736510
[62] Soni, RP, On an inequality for modified Bessel functions, J. Math. Phys., 44, 406-407 (1965) · Zbl 0137.04801 · doi:10.1002/sapm1965441406
[63] Streit, RL, A two-parameter family of weights for nonrecursive digital filters and antennas, IEEE Trans. Signal Process., 32, 1, 108-118 (1984) · doi:10.1109/TASSP.1984.1164275
[64] Stoyanov, J.; Lin, GD, Hardy’s condition in the moment problem for probability distributions, Theory Probab. Appl., 57, 699-708 (2013) · Zbl 1295.60020 · doi:10.1137/S0040585X9798631X
[65] Wang, C.; Wang, X.; Zhang, C.; Xia, Z., Geometric correction based color image watermarking using fuzzy least squares support vector machine and Bessel K form distribution, Signal Process., 134, 197-208 (2017) · doi:10.1016/j.sigpro.2016.12.010
[66] Watson, GN, A Treatise on the Theory of Bessel Functions (1922), Cambridge: Cambridge University Press, Cambridge · JFM 48.0412.02
[67] Watson, GS, Statistics on Spheres (1983), New-York: Wiley, New-York · Zbl 0646.62045
[68] Yang, Z-H; Zheng, S-Z, Sharp bounds for the ratio of modified Bessel functions, Mediterr. J. Math., 14, 4, Art. 169 (2017) · Zbl 1375.33011 · doi:10.1007/s00009-017-0971-1
[69] Yang, Z-H; Zheng, S-Z, Monotonicity and convexity of the ratios of the first kind modified Bessel functions and applications, Math. Inequal. Appl., 21, 1, 107-125 (2018) · Zbl 1382.26008
[70] Yang, Z.-H., Zheng, S.-Z.: Monotonicity of the ratio of modified Bessel functions of the first kind with applications. J. Inequal. Appl. (2018). Art. 57 · Zbl 1497.33009
[71] Yuan, L.; Kalbfleisch, JD, On the Bessel distribution and related problems, Ann. Inst. Stat. Math., 52, 3, 438-447 (2000) · Zbl 0960.62017 · doi:10.1023/A:1004152916478
[72] Zhang, B.; Zeng, GL, An immediate after-backprojection filtering method with blob-shaped window functions for voxel-based iterative reconstruction, Phys. Med. Biol., 51, 5825-5842 (2006) · doi:10.1088/0031-9155/51/22/007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.