×

Round fold maps of \(n\)-dimensional manifolds into \((n-1)\)-dimensional Euclidean space. (English) Zbl 1529.57031

Given a smooth closed manifold \(M\), a smooth map \(f:M\to\mathbb R^p\) with \(n\geq p\geq 1\) is called a fold map it its only singular points are fold points. Fold singularities are the simplest type of stable singularities which these maps may have, and, therefore, fold maps can be seen as a generalization of Morse functions. For fold maps, the singular set is a regular closed submanifold of \(M\) of dimension \(p-1\) and \(f\) restricted to its singular set is an immersion.
In this paper the authors study round fold maps, which are fold maps where the map restricted to the singular set is an embedding onto a disjoint union of concentric spheres in \(\mathbb R^p\). These maps have nice properties such as being simple, i.e. each component of the preimage of a point in \(\mathbb R^p\) contains at most one singular point.
In particular, they succeed in characterizing which smooth closed \(n\)-manifolds admit round fold maps into \(\mathbb R^{n-1}\) for \(n\geq 4\). They also classify round fold maps up to \(\mathscr A\)-equivalence (smooth changes of coordinates in source and target).

MSC:

57R45 Singularities of differentiable mappings in differential topology
58K30 Global theory of singularities
Full Text: DOI

References:

[1] A. Banyaga and D.E. Hurtubise, A proof of the Morse-Bott lemma, Expo. Math. 22 (2004), 365-373. DOI: 10.1016/s0723-0869(04)80014-8 · Zbl 1078.57031 · doi:10.1016/s0723-0869(04)80014-8
[2] E.B. Batista, J.C.F. Costa and J.J. Nuño-Ballesteros, The Reeb graph of a map germ from R 3 to R 2 with isolated zeros, Proc. Edinb. Math. Soc. (2) 60 (2017), 319-348. DOI: 10.1017/s0013091516000274 · Zbl 1376.58016 · doi:10.1017/s0013091516000274
[3] T. Bröcker and K. Jänich, Introduction to differential topology, Translated from the German by C.B. Thomas and M.J. Thomas, Cambridge University Press, Cambridge-New York, 1982. · Zbl 0486.57001
[4] C.J. Earle and J. Eells, The diffeomorphism group of a compact Riemann surface, Bull. Amer. Math. Soc. 73 (1967), 557-559. DOI: 10.1090/s0002-9904-1967-11746-4 · Zbl 0185.32804 · doi:10.1090/s0002-9904-1967-11746-4
[5] C.J. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19-43. DOI: 10.4310/jdg/1214428816 · Zbl 0185.32901 · doi:10.4310/jdg/1214428816
[6] C.J. Earle and A. Schatz, Teichmüller theory for surfaces with boundary, J. Differential Geometry 4 (1970), 169-185. · Zbl 0194.52802
[7] Ja. M.Èliasberg, Surgery of singularities of smooth mappings, Math. USSR Izv. 6 (1972), 1302-1326. DOI: 10.1070/im1972v006n06abeh001920 · Zbl 0273.57014 · doi:10.1070/im1972v006n06abeh001920
[8] T. Fukuda, Topology of folds, cusps and Morin singularities, in “A fête of topology”, pp. 331-353, Academic Press, Boston, MA, 1988. DOI: 10.1016/b978-0-12-480440-1.50019-8 · Zbl 0633.00020 · doi:10.1016/b978-0-12-480440-1.50019-8
[9] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14. Springer-Verlag, New York-Heidelberg, 1973. DOI: 10.1007/978-1-4615-7904-5 3 · Zbl 0294.58004 · doi:10.1007/978-1-4615-7904-5_3
[10] A. Gramain, Le type d’homotopie du groupe des difféomorphismes d’une surface compacte, Ann. Sci. Ecole Norm. Sup. (4) 6 (1973), 53-66. DOI: 10.24033/asens.1242 · Zbl 0265.58002 · doi:10.24033/asens.1242
[11] S.A. Izar, Funções de Morse e topologia das superfícies II: Classificação das funções de Morse estáveis sobre superfícies, Métrica no. 35, Estudo e Pesquisas em Matemática, IBILCE, Brazil, 1989. metrica-35.pdf
[12] N. Kitazawa, On manifolds admitting fold maps with singular value sets of concentric spheres, Doctoral dissertation, Tokyo Institute of Technology, 2014. DOI: 10.14492/hokmj/1416837569 · Zbl 1307.57018 · doi:10.14492/hokmj/1416837569
[13] N. Kitazawa, Fold maps with singular value sets of concentric spheres, Hokkaido Math. J. 43 (2014), 327-359. DOI: 10.14492/hokmj/1416837569 · Zbl 1307.57018 · doi:10.14492/hokmj/1416837569
[14] N. Kitazawa, Constructions of round fold maps on smooth bundles, Tokyo J. Math. 37 (2014), 385-403. DOI: 10.3836/tjm/1422452799 · Zbl 1337.57061 · doi:10.3836/tjm/1422452799
[15] N. Kitazawa and O. Saeki, Round fold maps on 3-manifolds, preprint, arXiv: 2105.00974, to appear in Alg. & Geom. Topology.
[16] H.I. Levine, Elimination of cusps, Topology 3 (1965), suppl. 2, 263-296. · Zbl 0146.20001
[17] S. Maksymenko, Smooth shifts along trajectories of flows, Topology Appl. 130 (2003), 183-204. DOI: 10.1016/s0166-8641(02)00363-2 · Zbl 1014.37012 · doi:10.1016/s0166-8641(02)00363-2
[18] S. Maksymenko, Homotopy types of stabilizers and orbits of Morse functions on surfaces, Ann. Global Anal. Geom. 29 (2006), 241-285. DOI: 10.1007/s10455-005-9012-6 · Zbl 1099.37013 · doi:10.1007/s10455-005-9012-6
[19] G. Reeb, Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 222 (1946), 847-849. DOI: 10.5962/bhl.part.13804 · Zbl 0063.06453 · doi:10.5962/bhl.part.13804
[20] O. Saeki, Notes on the topology of folds, J. Math. Soc. Japan 44 (1992), 551-566. · Zbl 0764.57017
[21] O. Saeki, Topology of special generic maps of manifolds into Euclidean spaces, Topology Appl. 49 (1993), 265-293. DOI: 10.1016/0166-8641(93)90116-u · Zbl 0768.57015 · doi:10.1016/0166-8641(93)90116-u
[22] O. Saeki, Topology of special generic maps into R 3 , in “Workshop on Real and Complex Singularities” (São Carlos, 1992), Mat. Contemp. 5 (1993), 161-186. · Zbl 0855.57026
[23] O. Saeki, Simple stable maps of 3-manifolds into surfaces II, J. Fac. Sci. Univ. Tokyo 40 (1993), 73-124. · Zbl 0794.57014
[24] O. Saeki, Simple stable maps of 3-manifolds into surfaces, Topology 35 (1996), 671-698. DOI: 10.1016/0040-9383(95)00034-8 · Zbl 0864.57028 · doi:10.1016/0040-9383(95)00034-8
[25] O. Saeki, Topology of singular fibers of differentiable maps, Lecture Notes in Math., Vol. 1854, Springer-Verlag, 2004. DOI: 10.1007/b100393 · Zbl 1072.57023 · doi:10.1007/b100393
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.