×

Can one recognize a function from its graph? (English) Zbl 1529.54004

In the present paper the authors want to answer the following two dual questions.
Given a class of functions \(f\colon X\to Y\), where \(X\) and \(Y\) are metric spaces, can we find a property of their graphs as subsets of \(X\times Y\) which exactly characterizes functions from this class?
Given a property of an appropriate subset of \(X\times Y\), can we describe the exact class of functions \(f\colon X\to Y\) such that their graphs have this property?
With a number of lemmas and theorems, the following classes of functions are characterized in this way:
functions with closed graphs;
functions with connected graphs;
functions with pathwise connected graphs;
regular Darboux functions.
In the second part of the paper the authors analyze the following problem:
If the graphs of two functions \(f\colon X\to Y\) and \(g\colon Y\to Z\) have a certain topological property, does the graph of their composition \(g\circ f\colon X\to Z\) have the same property?
They give some answers on this problem concerning the classes of functions with closed graphs, functions with connected graphs and functions which have closed fibres. Throughout the paper there are many examples and counterexamples illustrating the relationships between the discussed classes of functions.

MSC:

54C10 Special maps on topological spaces (open, closed, perfect, etc.)
26A15 Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable
26A21 Classification of real functions; Baire classification of sets and functions
54C50 Topology of special sets defined by functions
Full Text: DOI

References:

[1] S. J. Agronsky, J. G. Ceder, and T. L. Pearson, Some characterizations of Darboux Baire 1 functions. Real Anal. Exchange 23 (1997/98), no. 2, 421-430 Zbl 0943.26004 MR 1640015 · Zbl 0943.26004 · doi:10.2307/44153971
[2] J. Appell, B. López Brito, and S. Reinwand, Counterexamples on compositions. Math. Semes-terber. 70 (2023), no. 1, 43-56 Zbl 07711106 MR 4554090 · Zbl 1518.26002 · doi:10.1007/s00591-022-00318-x
[3] I. Baggs, Functions with a closed graph. Proc. Amer. Math. Soc. 43 (1974), 439-442 Zbl 0281.54005 MR 334132 · Zbl 0281.54005 · doi:10.2307/2038910
[4] A. M. Bruckner and J. G. Ceder, Darboux continuity. Jber. Deutsch. Math.-Verein. 67 (1964/65), no. 1, 93-117 MR 186761 · Zbl 0144.30003
[5] C. E. Burgess, Continuous functions and connected graphs. Amer. Math. Monthly 97 (1990), no. 4, 337-339 Zbl 0717.26002 MR 1048448 · Zbl 0717.26002 · doi:10.2307/2324521
[6] J. Ceder, On compositions with connected functions. Real Anal. Exchange 11 (1985/86), no. 2, 380-389 Zbl 0613.26012 MR 844258 · Zbl 0613.26012 · doi:10.2307/44151754
[7] G. I. Chae, V. P. Singh, and D. N. Misra, Composition of functions with closed graphs and its function spaces. Pusan Kyǒngnam Math. J. 5 (1989), no. 2, 151-154
[8] R. V. Fuller, Relations among continuous and various non-continuous functions. Pacific J. Math. 25 (1968), 495-509 Zbl 0165.25304 MR 227952 · Zbl 0165.25304 · doi:10.2140/pjm.1968.25.495
[9] G. L. Garg and A. Goel, On maps: continuous, closed, perfect, and with closed graph. Internat. J. Math. Math. Sci. 20 (1997), no. 2, 405-407 Zbl 0889.54007 MR 1444744 · Zbl 0889.54007 · doi:10.1155/S0161171297000537
[10] B. D. Garrett, D. Nelms, and K. R. Kellum, Characterizations of connected real functions. Jber. Deutsch. Math.-Verein. 73 (1971/72), part 1, 131-137 Zbl 0226.26006 MR 486349 · Zbl 0226.26006
[11] B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in analysis. The Mathesis Series, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964 Zbl 0121.28902 MR 169961 · Zbl 0121.28902 · doi:10.2307/3613279
[12] P. R. Halmos, Naive set theory. The University Series in Undergraduate Mathematics, D. Van Nostrand Co., Princeton, N.J.-Toronto-London-New York, 1960 MR 114756 · Zbl 0087.04403 · doi:10.1017/s0013091500002790
[13] J. Jelínek, A discontinuous function with a connected closed graph. Acta Univ. Carolin. Math. Phys. 44 (2003), no. 2, 73-77 Zbl 1056.54505 MR 2101904 · Zbl 1056.54505
[14] F. B. Jones, Connected and disconnected plane sets and the functional equation f .x/ C f .y/ D f .x C y/. Bull. Amer. Math. Soc. 48 (1942), 115-120 Zbl 0063.03063 MR 5906 · Zbl 0063.03063 · doi:10.1090/S0002-9904-1942-07615-4
[15] I. Juhász and J. van Mill, On maps preserving connectedness and/or compactness. Comment. Math. Univ. Carolin. 59 (2018), no. 4, 513-521 Zbl 1513.54061 MR 3914717 · Zbl 1513.54061 · doi:10.14712/1213-7243.2015.263
[16] D. Kahle, Charakterisierung der Stetigkeit reeller Funktionen durch Eigenschaften ihrer Graphen. Math.-Phys. Semesterber. 18 (1971), 55-60 Zbl 0215.40901 MR 422533 · Zbl 0215.40901
[17] K. R. Kellum, Almost continuous functions on I n . Fund. Math. 79 (1973), no. 3, 213-215 Zbl 0258.54009 MR 321065 · Zbl 0258.54009 · doi:10.4064/fm-79-3-213-215
[18] K. R. Kellum and H. Rosen, Compositions of continuous functions and connected functions. Proc. Amer. Math. Soc. 115 (1992), no. 1, 145-149 Zbl 0747.26002 MR 1073528 · Zbl 0747.26002 · doi:10.2307/2159577
[19] M. Kuczma, An introduction to the theory of functional equations and inequalities. 2nd edn., Birkhäuser, Basel, 2009 Zbl 1221.39041 MR 2467621 · doi:10.1007/978-3-7643-8749-5
[20] C. Kuratowski, Topologie. Vol. II. Monografie Matematyczne [Mathematical Monographs], Tom XX, Polskie Towarzystwo Matematyczne, Warsaw, 1952 MR 54937 · Zbl 0049.39703 · doi:10.2307/3608791
[21] K. Kuratowski and W. Sierpiński, Les fonctions de classe 1 et les ensembles connexes puncti-formes. Fund. Math. 3 (1922), 303-313 Zbl 48.0277.04 · JFM 48.0277.04 · doi:10.4064/fm-3-1-303-313
[22] P. E. Long, Classroom Notes: Functions with Closed Graphs. Amer. Math. Monthly 76 (1969), no. 8, 930-932 Zbl 0182.56002 MR 1535590 · Zbl 0182.56002 · doi:10.2307/2317955
[23] R. Maehara, The Jordan curve theorem via the Brouwer fixed point theorem. Amer. Math. Monthly 91 (1984), no. 10, 641-643 Zbl 0556.54025 MR 769530 · Zbl 0556.54025 · doi:10.2307/2323369
[24] S. Marcus, Functions with the Darboux property and functions with connected graphs. Math. Ann. 141 (1960), 311-317 Zbl 0095.26902 MR 120325 · Zbl 0095.26902 · doi:10.1007/BF01360765
[25] E. R. McMillan, On continuity conditions for functions. Pacific J. Math. 32 (1970), 479-494 Zbl 0198.28004 MR 257986 · Zbl 0198.28004 · doi:10.2140/pjm.1970.32.479
[26] Z. Piotrowski and A. Szymański, Closed graph theorem: topological approach. Rend. Circ. Mat. Palermo (2) 37 (1988), no. 1, 88-99 Zbl 0672.54009 MR 994139 · Zbl 0672.54009 · doi:10.1007/BF02844269
[27] E. S. Thomas, Jr., Some characterizations of functions of Baire class 1. Proc. Amer. Math. Soc. 17 (1966), 456-461 Zbl 0147.22702 MR 188993 · Zbl 0147.22702 · doi:10.2307/2035189
[28] A. C. M. van Rooij and W. H. Schikhof, A second course on real functions. Cambridge Uni-versity Press, Cambridge-New York, 1982 Zbl 0474.26001 MR 655599 · Zbl 0474.26001 · doi:10.1017/cbo9780511569241
[29] M. R. Wójcik, Continuity in terms of connectedness for functions on the line. Houston J. Math. 40 (2014), no. 4, 1319-1324 Zbl 1312.26005 MR 3298752 · Zbl 1312.26005
[30] M. R. Wójcik and M. S. Wójcik, Characterization of continuity for real-valued functions in terms of connectedness. Houston J. Math. 33 (2007), no. 4, 1027-1031 Zbl 1133.54009 MR 2350077 · Zbl 1133.54009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.