×

Fractional Schrödinger-Poisson system with critical growth and potentials vanishing at infinity. (English) Zbl 1529.35563

The authors in this paper consider a fractional elliptic problem in \(\mathbb{R}^3\) involving a (fractional) Schrödinger equation coupled with the (fractional) Poisson equation. The equation possesses competing potentials which may decay and vanish at infinity and a critical nonlinearity perturbed by a subcritical one. The authors are interested in finding positive solutions as well as their decay rate at infinity.
The problem is addressed by variational methods, using minimax techniques, penalization methods and Concentration Compactness Principle to recover the compactness.
Under some local conditions, the existence and concentration of positive solutions, as well its polynomial decay is proved.

MSC:

35R11 Fractional partial differential equations
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
92C17 Cell movement (chemotaxis, etc.)
35J47 Second-order elliptic systems
Full Text: DOI

References:

[1] C. O.Alves and M. A. S.Souto, Existence of solutions for a class of elliptic equations in \(\mathbb{R}^N\) with vanishing potentials, J. Differential Equations.252 (2012), 5555-5568. · Zbl 1250.35103
[2] C. O.Alves and M. A. S.Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinitly, J. Differential Equations.254 (2013), 1977-1991. · Zbl 1263.35076
[3] C. O.Alves, J. M.do Ó, and M. A. S.Souto, Local mountain‐pass for a class of elliptic problems in \(\mathbb{R}^N\) involving critical growth, Nonlinear Anal. TMA46 (2001), 495-510. · Zbl 1113.35323
[4] A.Ambrosetti, On Schrödinger‐Possion systems, Milan J. Math.76 (2008), 257-274. · Zbl 1181.35257
[5] A.Ambrosetti, V.Felli, and A.Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc.7 (2005), 117-144. · Zbl 1064.35175
[6] A.Ambrosetti and A.Malchiodi, Perturbation methods and semilinear elliptic problems on \(\mathbb{R}^N\), In: Progress in Mathematics, Birkhauser Verlag, Basel (eds), vol. 240, 2006. · Zbl 1115.35004
[7] A.Ambrosetti and P.Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), 340-381. · Zbl 0273.49063
[8] A.Ambrosetti and Z. Q.Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential Integral Equations18 (2005), 1321-1332. · Zbl 1210.35087
[9] V.Ambrosio and T.Isernia, Multiplicity results for nonlinear Schrödinger equations with the fractional p‐Laplacian, Discrete Contin. Dyn. Syst. A38 (2018), 5835-5881. · Zbl 06951275
[10] B.Barrios and M.Medina, Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A150 (2020), 475-495. · Zbl 1436.35059
[11] T.Bartsch, Z.Liu, and T.Weth, Nodal solutions of a p‐Laplacian equation, Proc. London Math. Soc.91 (2005), 129-152. · Zbl 1162.35364
[12] V.Benci and D.Fortunato, An eigenvalue problem for the Schrödinger‐Maxwell equation, Topol. Methods Nonlinear Anal.11 (1998), 283-293. · Zbl 0926.35125
[13] D.Bonheure and J.Van Schaftingen, Ground states for nonlinear Schrödinger equation with potential vanishing at infinity, Ann. Mat. Pura Appl.189 (2010), 273-301. · Zbl 1189.35059
[14] L.Brasco, S.Mosconi, and M.Squassina, Optimal decay of extremals for the fractional Sobolev inequality, Calc. Var. Partial Differential Equations55 (2016), 23. https://doi.org/10.1007/s00526‐016‐0958‐y · Zbl 1350.46024 · doi:10.1007/s00526‐016‐0958‐y
[15] H.Brézis and L.Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math.36 (1983), 437-477. · Zbl 0541.35029
[16] S. Y. A.Chang and M.delMar González, Fractional Laplacian in conformal geometry, Adv. Math.226 (2011), 1401-1432. · Zbl 1214.26005
[17] W.Chen, Y.Li, and P.Ma, The fractional Laplacian, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2020. · Zbl 1451.35002
[18] R.Cont and P.Tankov, Financial modeling with jump processes, Chapman Hall/CRC Financial Mathematics Series, 2004, Boca Raton, FL. · Zbl 1052.91043
[19] M.delPino and P. L.Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations4 (1996), 121-137. · Zbl 0844.35032
[20] Y.Deng, Y.Li, and W.Shuai, Existence of solutions for a class of p‐Lapcacian type equation with critical growth and potential vanishing at infinity, Discrete Contin. Dyn. Syst.36 (2016), 683-699. · Zbl 1323.35038
[21] E.Di Nezza, GPalatucci, and E.Valdinoci, Hitchhiker’s guide to the fractional Sobolev space, Bull. Sci. Math.136 (2012), 521-573. · Zbl 1252.46023
[22] J. M.do Ó, On existence and concentration of positive bound states of p‐Laplacian equations in \(\mathbb{R}^N\) involving critical growth, Nonlinear Anal. TMA62 (2005), 777-801. · Zbl 1213.35220
[23] P.Felmer, A.Quaas, and J.Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A142 (2012), 1237-1262. · Zbl 1290.35308
[24] X.He and W.Zou, Multiplicity of concentrating positive solutions for Schrödinger‐Possion equalitions with critical growth, Nonlinear Anal. TMA170 (2018), 142-170. · Zbl 1388.35017
[25] A.Ianniaaotto, S.Mosconi, and M.Squassina, Global Hölder regularity for the fractional p‐Laplacian, Rev. Mat. Iberoam.32 (2016), 1353-1392. · Zbl 1433.35447
[26] Y.Jiang and H.Zhou, Schrödinger‐Possion systems with steep potential well, J. Differential Equations251 (2011), 582-608. · Zbl 1233.35086
[27] N.Laskin, Fractional quantum mechanics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. · Zbl 1425.81007
[28] N.Laskin, Fractiional Schröinger equation, Phys. Rev. E66 (2002), 056108, 7 p.
[29] N.Laskin, Fractional quantum mechanics and Lévy path intrgrals, Phys. Lett. A268 (2000), 298-305. · Zbl 0948.81595
[30] E.Lieb and M.Loss, Analysis, American Mathematical Society, Providence, RI, 2001. · Zbl 0966.26002
[31] P.‐L.Lions, The concentration‐compactness principle in the calculus of variations, The limit case. Part I, Rev. Mat. Iberoamericana1 (1985), 145-201. · Zbl 0704.49005
[32] W.Liu, Existence of multi‐bump solutions for the fractional Schrödinger‐Poisson system, J. Math. Phys.57 (2016), no. (9), 091502. 17. · Zbl 1348.35297
[33] Z.Liu and J.Zhang, Multiplicity and concentration of positive solutions for the fractional Schrödinger‐Poisson systems with critical growth, ESAIM Control Optim. Calc. Var.23 (2017), 1515-1542. · Zbl 1516.35467
[34] A. N.Lyberopoulos, Quasilinear scalar field equations involving critical Sobolev exponents and potentials vanishing at infinity, Proc. Edinb. Math. Soc.61 (2018), 1-29. · Zbl 1421.35174
[35] R.Metzler and J.Klafter, The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep.339 (2000), 1-77. · Zbl 0984.82032
[36] G.Molica Bisci, V.Radulescu, and R.Servadei, Variational methods for nonlocal fractional problems, vol. 162, Cambridge University Press, Cambridge, 2016. · Zbl 1356.49003
[37] V.Moroz and J.Van Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, Calc. Var. Partial Differential Equations37 (2010), 1-27. · Zbl 1186.35038
[38] E. G.Murcia and G.Siciliano, Positive semiclassical states for a fractional Schrödinger‐Poisson system, Differential Integral Equations30 (2017), 231-258. · Zbl 1413.35018
[39] G.Palatucci and A.Pisante, Improve Sobolve embeddings, profile decomposition, and concentrate‐compactness for fractional Sobolev space, Calc. Var. Partial Differential Equations50 (2016), 799-829. · Zbl 1296.35064
[40] P. H.Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys.43 (1992), 270-291. · Zbl 0763.35087
[41] R.Servadei and E.Valdinoci, The Brezis‐Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc.367 (2015), 67-102. · Zbl 1323.35202
[42] L.Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math.60 (2007), 67-112. · Zbl 1141.49035
[43] J.Sun, H.Chen, and J. J.Nieto, On ground state solutions for some non‐autonomous Schrödinger‐Possion systems, J. Differential Equations252 (2012), 3365-3380. · Zbl 1241.35057
[44] K.Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger‐Possion system with critical Sobolev exponent, J. Differential Equations261 (2016), 3061-3106. · Zbl 1386.35458
[45] K.Teng, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger‐Poisson system with critical growth, Math. Methods Appl. Sci.41 (2018), 8258-8293. · Zbl 1405.35252
[46] K.Teng, Ground state solutions for the nonlinear fractional Schrödinger‐Poisson system, Appl. Anal.98 (2019), 1959-1998. · Zbl 1447.35363
[47] M.Willem, Minimax theorems, Birkhäuser, Boston, Inc., Boston, MA1996. · Zbl 0856.49001
[48] Z.Yang, Y.Yu, and F.Zhao, Concentration behavior of ground state solutions for a fractional Schrödinger‐Poisson system involving critical exponent, Commun. Contemp. Math.21 (2019), 1-46. https://doi.org/10.1142/S021919971850027X · Zbl 1428.35427 · doi:10.1142/S021919971850027X
[49] Y.Yu, F.Zhao, and L.Zhao, Positive and sign‐changing least energy solutions for a fractional Schrödinger‐Poisson system with critical exponent, Appl. Anal.99 (2020), 2229-2257. · Zbl 1448.35425
[50] Y.Yu, F.Zhao, and L.Zhao, The existence and multiplicity of solutions of a fractional Schrödinger‐Poisson system with critical growth, Sci. China Math.61 (2018), 1039-1062. · Zbl 1391.35403
[51] J.Zhang, J. M.do Ó, and M.Squassina, Fractional Schrödinger‐Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud.16 (2016), 15-30. · Zbl 1334.35407
[52] X.Zhang, B.Zhang, and M.Xiang, Ground states for fractional Schrödinger equations involving a critical nonlinearity, Adv. Nonlinear Anal.5 (2016), 293-314. · Zbl 1346.35224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.