×

A return-to-home model with commuting people and workers. (English) Zbl 1529.35524

Summary: This article proposes a new model to describe human intra-city mobility. The goal is to combine the convection-diffusion equation to describe commuting people’s movement and the density of individuals at home. We propose a new model extending our previous work with a compartment of office workers. To understand such a model, we use semi-group theory and obtain a convergence result of the solutions to an equilibrium distribution. We conclude this article by presenting some numerical simulations of the model.

MSC:

35Q91 PDEs in connection with game theory, economics, social and behavioral sciences
35Q92 PDEs in connection with biology, chemistry and other natural sciences
91D10 Models of societies, social and urban evolution
92D25 Population dynamics (general)
37N25 Dynamical systems in biology

References:

[1] Amann, H., Linear and quasilinear parabolic problems (1995), Basel: Birkhäuser, Basel · Zbl 0819.35001 · doi:10.1007/978-3-0348-9221-6
[2] Arendt, W.; Glück, J., Positive irreducible semigroups and their long-time behaviour, Philos Trans Roy Soc A, 378, 2185, 20190611 (2020) · doi:10.1098/rsta.2019.0611
[3] Arendt, W.; Grabosch, A.; Greiner, G.; Moustakas, U.; Nagel, R.; Schlotterbeck, U.; Groh, U.; Lotz, HP; Neubrander, F., One-parameter semigroups of positive operators (1986), New York: Springer, New York · Zbl 0585.47030
[4] Arino, O., A survey of structured cell populations, Acta Biotheor, 43, 3-25 (1995) · doi:10.1007/BF00709430
[5] Bagan, H.; Yamagata, Y., Landsat analysis of urban growth: how Tokyo became the world’s largest megacity during the last 40 years, Remote Sens Environ, 127, 210-222 (2012) · doi:10.1016/j.rse.2012.09.011
[6] Brezis, H.; Mironescu, P., Gagliardo? Nirenberg inequalities and non-inequalities: the full story, Annales de l’Institut Henri Poincaré C Analyse non linéaire, 35, 5, 1355-1376 (2018) · Zbl 1401.46022 · doi:10.1016/j.anihpc.2017.11.007
[7] Brockmann, D.; Hufnagel, L.; Geisel, T., The scaling laws of human travel, Nature, 439, 7075, 462-465 (2006) · doi:10.1038/nature04292
[8] Cantrell, RS; Cosner, C., Spatial ecology via reaction-diffusion equations (2004), Wiley · Zbl 1059.92051 · doi:10.1002/0470871296
[9] Cantrell, RS; Cosner, C.; Ruan, S., Spatial ecology (2010), Boca Raton: CRC Press, Boca Raton · Zbl 1173.91013
[10] Charaudeau, S.; Pakdaman, K.; Boëlle, PY, Commuter mobility and the spread of infectious diseases: application to influenza in France, PLoS ONE, 9, 1, e83002 (2014) · doi:10.1371/journal.pone.0083002
[11] Cosner, C.; Beier, JC; Cantrell, RS; Impoinvil, D.; Kapitanski, L.; Potts, MD; Troyo, A.; Ruan, S., The effects of human movement on the persistence of vector borne diseases, J Theor Biol, 258, 550-560 (2009) · Zbl 1402.92386 · doi:10.1016/j.jtbi.2009.02.016
[12] Ducrot, A.; Magal, P., Return-to-home model for short-range human travel, Math Biosci Eng, 19, 8, 7737-7755 (2022) · Zbl 1511.91097 · doi:10.3934/mbe.2022363
[13] Ducrot, A.; Magal, P.; Prevost, K., Integrated semigroups and parabolic equations. Part I: linear perburbation of almost sectorial operators, J Evol Equ, 10, 263-291 (2010) · Zbl 1239.35083 · doi:10.1007/s00028-009-0049-z
[14] Ducrot, A.; Griette, Q.; Liu, Z.; Magal, P., Differential equations and population dynamics I: introductory approaches (2022), New York: Springer, New York · Zbl 1503.92001 · doi:10.1007/978-3-030-98136-5
[15] Engel, K-J; Nagel, R., One parameter semigroups for linear evolution equations (2000), New York: Springer, New York · Zbl 0952.47036
[16] Fisher, RA, The wave of advance of advantageous genes, Ann Eugen, 7, 4, 355-369 (1937) · JFM 63.1111.04 · doi:10.1111/j.1469-1809.1937.tb02153.x
[17] Friedmann, A., Partial differential equations (1969), Rinehartand Winston: Holt, Rinehartand Winston · Zbl 0224.35002
[18] Gilbarg, D.; Trudinger, NS, Elliptic partial differential equations of second order (1977), Springer · Zbl 0361.35003 · doi:10.1007/978-3-642-96379-7
[19] Gonzalez, MC; Hidalgo, CA; Barabasi, AL, Understanding individual human mobility patterns, Nature, 453, 7196, 779-782 (2008) · doi:10.1038/nature06958
[20] Grabosch, A., Compactness properties and asymptotics of strongly coupled systems, J Math Anal Appl, 187, 411-437 (1994) · Zbl 0841.92013 · doi:10.1006/jmaa.1994.1365
[21] Greiner G (1984) A typical Perron-Frobenius theorem with applications to an age-dependent population equation. In: Infinite-dimensional systems: proceedings of the conference on operator semigroups and applications held in Retzhof (Styria), Austria, June 5-11, 1983, pp 86-100. Springer, Berlin · Zbl 0568.47031
[22] Haase, M., The functional calculus for sectorial operators (2006), Cham: Birkhäuser Basel, Cham · Zbl 1101.47010 · doi:10.1007/3-7643-7698-8
[23] Henry, D., Geometric theory of semilinear parabolic equations (1981), New York: Springer, New York · Zbl 0456.35001
[24] Ignatova, M.; Kukavica, I.; Ryzhik, L., The Harnack inequality for second-order parabolic equations with divergence-free drifts of low regularity, Commun Part Differ Equ, 41, 2, 208-226 (2016) · Zbl 1343.35047 · doi:10.1080/03605302.2015.1116557
[25] Klafter, J.; Shlesinger, MF; Zumofen, G., Beyond Brownian motion, Phys Today, 49, 2, 33-39 (1996) · doi:10.1063/1.881487
[26] Kolmogorov, AN; Petrovski, IG; Piskunov, NS, Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. Moskow, Ser Internat Sect A, 1, 1-25 (1937) · Zbl 0018.32106
[27] Lunardi, A., Analytic semigroups and optimal regularity in parabolic problems (1995), Basel: Birkhauser, Basel · Zbl 0816.35001 · doi:10.1007/978-3-0348-0557-5
[28] Magal, P.; Thieme, HR, Eventual compactness for a semiflow generated by an age-structured models, Commun Pure Appl Anal, 3, 695-727 (2004) · Zbl 1083.47061 · doi:10.3934/cpaa.2004.3.695
[29] Magal, P.; Ruan, S., Theory and applications of abstract semilinear Cauchy problems (2018), Springer · Zbl 1447.34002
[30] Magal, P.; Webb, GF; Wu, Y., An environmental model of honey bee colony collapse due to pesticide contamination, Bull Math Biol, 81, 4908-4931 (2019) · Zbl 1442.92193 · doi:10.1007/s11538-019-00662-5
[31] Magal, P.; Webb, GF; Wu, Y., A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees, J Math Biol, 80, 2363-2393 (2020) · Zbl 1443.92161 · doi:10.1007/s00285-020-01498-7
[32] Mantegna, RN; Stanley, HE, Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight, Phys Rev Lett, 73, 22, 2946 (1994) · Zbl 1020.82610 · doi:10.1103/PhysRevLett.73.2946
[33] Murray, JD, Mathematical biology II: spatial models and biomedical applications (2001), New York: Springer, New York
[34] Pazy, A., Semigroups of operator and application to partial differential equation (1983), Berlin: Springer, Berlin · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[35] Perthame, B., Parabolic equations in biology (2015), Springer · Zbl 1333.35001 · doi:10.1007/978-3-319-19500-1
[36] Protter, MH; Weinberger, HF, Maximum principles in differential equations (2012), Springer · Zbl 0153.13602
[37] Pumain, D.; Saint-Julien, T., L’analyse Spatiale (1997), Paris: La localisation dans l’espace, Paris
[38] Roques L (2013) Modèles de réaction-diffusion pour l’écologie spatiale: avec exercices dirigés. Editions Quae
[39] Ruan, S.; Takeuchi, Y.; Sato, K.; Iwasa, Y., Spatial-temporal dynamics in nonlocal epidemiological models, Mathematics for life science and medicine, 97-122 (2007), Berlin: Springer, Berlin · Zbl 1103.92301
[40] Ruan, S., Spatiotemporal epidemic models for rabies among animals, Infect Dis Model, 2, 3, 277-287 (2017)
[41] Speth, RL; Green, WH; MacNamara, S.; Strang, G., Balanced splitting and rebalanced splitting, SIAM J Numer Anal, 51, 6, 3084-3105 (2013) · Zbl 1284.65121 · doi:10.1137/120878641
[42] Tanabe, H., Equations of evolution (1979), Pitman · Zbl 0417.35003
[43] Temam, R., Infinite dimensional dynamical systems in mechanics and physics (1988), New York: Springer, New York · Zbl 0662.35001 · doi:10.1007/978-1-4684-0313-8
[44] Webb, GF, Compactness of bounded trajectories of dynamical systems in infinite dimensional spaces, Proc Roy Soc Edinburgh, 84A, 19-33 (1979) · Zbl 0414.34042 · doi:10.1017/S0308210500016930
[45] Webb, GF, An operator-theoretic exponential growth in differential equations, Trans AMS, 303, 751-763 (1987) · Zbl 0654.47021 · doi:10.1090/S0002-9947-1987-0902796-7
[46] Yagi, A., Abstract parabolic evolution equations and their applications (2010), Berlin: Springer, Berlin · Zbl 1190.35004 · doi:10.1007/978-3-642-04631-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.