×

Multiply-connected complementary Hall plates with extended contacts. (English) Zbl 1529.35489

Summary: We consider uniform plane Hall plates with an arbitrary number of holes exposed to a uniform perpendicular magnetic field of arbitrary strength. The plates have extended contacts on the outer boundary and on the boundaries of the holes. No symmetry is presumed. Pairs of complementary Hall plates are defined, where contacts and insulating segments on the boundaries are swapped. A unique stream function exists in these multiply-connected domains if the total current through each boundary vanishes. Then the voltages between neighbouring contacts and the currents into contacts of pairs of complementary Hall plates are linked in a peculiar way, which results in identical power density. Relations between the impedances of complementary multiply-connected Hall plates are derived. The prominent role of complementary symmetric Hall plates – with or without holes – is revealed. For arbitrary magnetic field, their resistance equals the one of a square without holes and with contacts fully covering two opposite edges.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
35C05 Solutions to PDEs in closed form
78A30 Electro- and magnetostatics
Full Text: DOI

References:

[1] Stoica, D., Motz, M.: A dual vertical Hall latch with direction detection. In: 2013 Proceedings of the ESSCIRC (ESSCIRC) (2013), pp. 213-216. doi:10.1109/ESSCIRC.2013.6649110
[2] Ausserlechner, U., Hall effect devices with three terminals: their magnetic sensitivity and offset cancellation scheme, J. Sens. (2016) · doi:10.1155/2016/5625607
[3] Ausserlechner, U., Relations between Hall plates with complementary contact geometries, J. Appl. Math. Phys., 7, 11, 2836 (2019) · doi:10.4236/jamp.2019.711195
[4] Homentcovschi, D.; Bercia, R., Analytical solution for the electric field in Hall plates, Z. Angew. Math. Phys., 69, 4, 1-7 (2018) · Zbl 1401.30043 · doi:10.1007/s00033-018-0989-7
[5] Ausserlechner, U., Complementary symmetric Hall-plates with a hole and four outer extended contacts, Proc. R. Soc. A, 478, 12 (2022) · doi:10.1098/rspa.2022.0433
[6] Homentcovschi, D., Manolescu, A., Manolescu, A.M., Burileanu, C.: A general approach to analysis of distributed resistive structures. IEEE Trans. Electron Devices ED-25, 787-794 (1978). doi:10.1109/T-ED.1978.19171
[7] Haeusler, J.: Die Untersuchung von Potentialproblemen bei tensorieller Leitfähigkeit der Halbleiter und Plasmen im transversalen Magnetfeld. Thesis, TU Stuttgart (1967) (in German)
[8] Ausserlechner, U., The classical Hall effect in multiply-connected plane regions part I: topologies with stream function, J. Appl. Math. Phys., 7, 9, 1968-1996 (2019) · doi:10.4236/jamp.2019.79136
[9] Ausserlechner, U., The classical Hall effect in multiply-connected plane regions part II: spiral current streamlines, J. Appl. Math. Phys., 7, 10, 1968-1996 (2019) · doi:10.4236/jamp.2019.710153
[10] Newnham, R.E.: Properties of Materials—Anisotropy, Symmetry, Structure. Oxford University Press on Demand, Oxford (2005). (chapter 9.3)
[11] Popovic, RS, Hall Effect Devices (2004), Bristol: IOP Publishing Ltd., Bristol · doi:10.1887/0750308559
[12] Trefethen, L.N., Williams, R.J.: Conformal mapping solution of Laplace’s equation on a polygon with oblique derivative boundary conditions. J. Comput. Appl. Math. 14(1-2), 227-249 (1986). doi:10.1016/0377-0427(86)90141-X · Zbl 0596.30014
[13] Lippmann, H.J., Kuhrt, F.: Der Geometrieeinfluss auf den transversalen magnetischen Widerstandseffekt bei rechteckförmigen Halbleiterplatten. Zeitschrift für Naturforschung A 13, 462-474 (1958). doi:10.1515/zna-1958-0607. ( in German) · Zbl 0080.45505
[14] Sample, H.H., Bruno, W.J., Sample, S.B., Sichel, E.K.: Reverse-field reciprocity for conducting specimens in magnetic fields. J. Appl. Phys. 61(3), 1079-1084 (1987). doi:10.1063/1.338202
[15] Cornils, M.; Paul, O., Reverse-magnetic-field reciprocity in conductive samples with extended contacts, J. Appl. Phys., 104, 2 (2008) · doi:10.1063/1.2951895
[16] Wick, RF, Solution of the field problem of the germanium gyrator, J. Appl. Phys., 25, 6, 741-756 (1954) · Zbl 0055.45207 · doi:10.1063/1.1721725
[17] Jensen, HH; Smith, H., Geometrical effects in measurements of magnetoresistance, J. Phys. C: Solid State Phys., 5, 20, 2867 (1972) · doi:10.1088/0022-3719/5/20/006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.