×

Multiplicity of solutions for a generalized Kadomtsev-Petviashvili equation with potential in \(\mathbb{R}^2\). (English) Zbl 1529.35006

Summary: In this article, we study the generalized Kadomtsev-Petviashvili equation with a potential \[(-u_{xx}+D_x^{-2}u_{yy}+V(\varepsilon x,\varepsilon y)u-f(u))_x=0 \quad \text{in }\mathbb{R}^2,\] where \(D_x^{-2}h(x,y)=\int_{-\infty }^x\int_{-\infty }^th(s,y)\, ds\, dt, f\) is a nonlinearity, \(\varepsilon\) is a small positive parameter, and the potential \(V\) satisfies a local condition. We prove the existence of nontrivial solitary waves for the modified problem by applying penalization techniques. The relationship between the number of positive solutions and the topology of the set where \(V\) attains its minimum is obtained by using Ljusternik-Schnirelmann theory. With the help of Moser’s iteration method, we verify that the solutions of the modified problem are indeed solutions of the original problem for \(\varepsilon>0\) small enough.

MSC:

35A15 Variational methods applied to PDEs
35A18 Wave front sets in context of PDEs
35B25 Singular perturbations in context of PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
76B25 Solitary waves for incompressible inviscid fluids

References:

[1] C. O. Alves, C. Ji; Existence and concentration of nontrivial solitary waves for a generalized Kadomtsev-Petviashvili equation in R 2 , Journal of Differential Equations. 368 (2023), 141-172. · Zbl 1518.35016
[2] C. O. Alves, O. H. Miyagaki, A. Pomponio; Solitary waves for a class of generalized Kadomtsev-Petviashvili equation in R N with positive and zero mass, Journal of Mathematical Analysis and Applications. 477 (2019), 523-535. · Zbl 1416.35083
[3] C. O. Alves, O. H. Miyagaki; Existence, regularity, and concentration phenomenon of non-trivial solitary waves for a class of generalized variable coefficient Kadomtsev-Petviashvili equation, Journal of Mathematical Physics. 58 (2017), 081503. · Zbl 1370.76019
[4] V. Benci, G. Cerami; Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differ. Equ. 2 (1994), 29-48. · Zbl 0822.35046
[5] O. V. Besov, V. P. Il’in, S. M. Nikolski; Integral Representations of Functions and Imbedding Theorems, Vol. I, Wiley, New York, 1978. · Zbl 0392.46022
[6] H. Brezis, E. Lieb; A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88 (1983), 486-490. · Zbl 0526.46037
[7] A. De Bouard, J. -C. Saut; Sur les ondes solitarires deséquations de Kadomtsev-Petviashvili, C. R. Acad. Sci. Paris. 320 (1995), 315-318. · Zbl 0833.35028
[8] A. De Bouard, J. -C. Saut; Solitary waves of generalized Kadomtsev-Petviashvili equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire. 14 (1997), 211-236. · Zbl 0883.35103
[9] K. C. Chang; Methods in nonlinear analysis, Berlin: Springer, 2005. · Zbl 1081.47001
[10] G. Figueiredo, M. Montenegro; Multiple solitary waves for a generalized Kadomtsev-Petviashvili equation with a potential, Journal of Differential Equations. 308 (2022), 40-56. · Zbl 1479.35209
[11] D. Gilbarg, N. S. Trudinger;
[12] Elliptic Partial Equations of Second Order, Reprint of the 1998th edn. Classics in Mathematics, Springer, Berlin, 2001. · Zbl 1042.35002
[13] X. M. He, W. M. Zou; Nontrivial solitary waves to the generalized Kadomtsev-Petviashvili equations, Appl. Math. Comput. 197 (2008), 858-863. · Zbl 1132.35455
[14] X. M. He, W. M. Zou; Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differential Equations. 55 (2016), 1-39. · Zbl 1395.35193
[15] B. B. Kadomtsev, V. I. Petviashvili; On the stability of solitary waves in weakly dispersing media, Doklady Akademii Nauk. Russian Academy of Sciences. 192 (1970), 753-756. · Zbl 0217.25004
[16] P. L. Lions; The concentration-compactness principle in the calculus of variations. The locally compact case I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), no. 2, 109-45. · Zbl 0541.49009
[17] P. L. Lions; The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), no. 4, 223-283. · Zbl 0704.49004
[18] Z. P. Liang, J. B. Su; Existence of solitary waves to a generalized Kadomtsev-Petviashvili equation, Acta Math. Sci. 32B (2012), 1149-1156. · Zbl 1274.35311
[19] H. Luo, X. Tang; Ground state and multiple solutions for the fractional Schrödinger-Poisson system with critical Sobolev exponent, Nonlinear Analysis: Real World Applications. 42 (2018), 24-52. · Zbl 1516.35470
[20] Y. Li, Y. Wei, X. Yang; On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation, Discrete & Continuous Dynamical Systems-Series S. 10 (2017), 1095-1106. · Zbl 1364.35321
[21] E. G. Murcia, G. Siciliano; Positive semiclassical states for a fractional Schrödinger-Poisson system, Differential Integral Equations. 30 (2017), 231-258. · Zbl 1413.35018
[22] M. del Pino, P. L. Felmer; Local Mountain Pass for semilinear elliptic problems in unbounded domains, Cal. Var. Partial Differential Equations. 4 (1996), 121-137. · Zbl 0844.35032
[23] J. Rochdi; On the high energy solitary waves solutions for a generalized KP equation in bounded domain, Ukrains’kyi Matematychnyi Zhurnal. 74 (2022), 311-322. · Zbl 1501.35346
[24] A. Szulkin, T. Weth; The method of Nehari mainfold, Handbook of Nonconvex Analysis and Applications. 2010, 597-632. · Zbl 1218.58010
[25] A. Szulkin, W. M. Zou; Homoclinic orbit for asymptotically linear Hamiltonian systems, J. Funct. Anal. 187 (2001), 25-41. · Zbl 0984.37072
[26] M. Willem; Minimax Theorems, Birkhäuser, 1996.
[27] Z. Q. Wang, M. Willem; A multiplicity result for the generalized Kadomtsev-Petviashvili equation, Topol. Methods Nonlinear Anal. 7 (1996), 261-270. · Zbl 0902.35100
[28] B. Xuan; Multiple stationary solutions to GKP equation in a bounded domain, Boletín de matemáticas. 9 (2002), 11-22. · Zbl 1203.35251
[29] B. Xuan; Multiple Stationary Solutions to GKP Equation with Asymptotically Linear Term at Infinity, Science Direct Working Paper. 2003 (S1574-0358): 04.
[30] J. Xu, Z. Wei, Y. Ding; Stationary solutions for a generalized Kadomtsev-Petviashvili equa-tion in bounded domain, Electronic Journal of Qualitative Theory of Differential Equations. 2012 (2012), No. 68, 1-18. · Zbl 1340.35316
[31] W. M. Zou; Solitary waves of the generalized Kadomtsev-Petviashvili equations, Appl. Math. Lett. 15 (2002), 35-39. · Zbl 1016.35062
[32] Y. Zhu, C. Chen, J. Chen, et al; Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation, Open Mathematics. 19 (2021), 297-305. · Zbl 1483.35191
[33] Zheng Xie School of Mathematics and Computer science, Hunan University of Science and Tech-nology, Xiangtan, 411201 Hunan, China Email address: xz@mail.hnust.edu.cn
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.