×

Improved sharp spectral inequalities for Schrödinger operators on the semi-axis. (English) Zbl 1529.34077

The author establishes a Lieb-Thirring inequality applicable to Schrödinger operators \(-\frac{d^2}{dx^2}+V\) represented on the semi-axis and subject to a Robin boundary condition at the origin. His findings present enhancements over the previously derived bounds outlined by P. Exner et al. [Commun. Math. Phys. 326, No. 2, 531–541 (2014; Zbl 1297.35155)], contingent upon an additional assumption \(V\in L^1 (R_+)\). His approach differs significantly by employing the double commutation method as opposed to the single commutation method utilized in prior studies. Additionally, he establishes an upgraded inequality specifically when dealing with a Dirichlet boundary condition.

MSC:

34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34B09 Boundary eigenvalue problems for ordinary differential equations
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators

Citations:

Zbl 1297.35155

References:

[1] R. Benguria and M. Loss, A simple proof of a theorem of Laptev and Weidl. Math. Res. Lett. 7 (2000), no. 2-3, 195-203 Zbl 0963.34077 MR 1764316 · Zbl 0963.34077
[2] A. Boumenir and V. K. Tuan, A trace formula and Schmincke inequality on the half-line. · Zbl 1173.34053
[3] Proc. Amer. Math. Soc. 137 (2009), no. 3, 1039-1049 Zbl 1173.34053 MR 2457445
[4] V. S. Buslaev and L. D. Faddeev, Formulas for traces for a singular Sturm-Liouville dif-ferential operator. Dokl. Akad. Nauk SSSR 132 (196), 13-16; · Zbl 0129.06501
[5] English transl., Soviet Math. Dokl. 1 (1960), 451-454 Zbl 0129.06501 MR 0120417
[6] M. M. Crum, Associated Sturm-Liouville systems. Quart. J. Math. Oxford Ser. (2) 6 (1955), 121-127 Zbl 0065.31901 MR 72332 · Zbl 0065.31901
[7] M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. of Math. (2) 106 (1977), no. 1, 93-100 Zbl 0362.47006 MR 473576 · Zbl 0362.47006
[8] M. Danish Zia and M. Usman, Sharp spectral inequalities for fourth order differential operators on semi-axis. Math. Phys. Anal. Geom. 22 (2019), no. 4, article no. 24 Zbl 1430.35177 MR 4039077 · Zbl 1430.35177
[9] G. Darboux, Sur une proposition relative aux équations linéaires. C. R. Acad. Sci. Paris 94 (1882), 1456-1459 (1882). JFM 14.0264.01 · JFM 14.0264.01
[10] P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials. Comm. Math. Phys. 203 (1999), no. 2, 341-347 Zbl 0934.34075 MR 1697600 · Zbl 0934.34075
[11] P. A. Deift, Applications of a commutation formula. Duke Math. J. 45 (1978), no. 2, 267-310 Zbl 0392.47013 MR 495676 · Zbl 0392.47013
[12] S. Demirel and M. Usman, Trace formulas for Schrödinger operators on the half-line. Bull. Math. Sci. 1 (2011), no. 2, 397-427 Zbl 1256.35041 MR 2901006 · Zbl 1256.35041
[13] P. Exner, A. Laptev, and M. Usman, On some sharp spectral inequalities for Schrödinger operators on semiaxis. Comm. Math. Phys. 326 (2014), no. 2, 531-541 Zbl 1297.35155 MR 3165466 · Zbl 1297.35155
[14] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Korteweg-deVries equation and generalization. VI. Methods for exact solution. Comm. Pure Appl. Math. 27 (1974), 97-133 Zbl 0291.35012 MR 336122 · Zbl 0291.35012
[15] F. Gesztesy, A complete spectral characterization of the double commutation method. J. Funct. Anal. 117 (1993), no. 2, 401-446 Zbl 0813.34074 MR 1244942 · Zbl 0813.34074
[16] F. Gesztesy and G. Teschl, On the double commutation method. Proc. Amer. Math. Soc. 124 (1996), no. 6, 1831-1840 Zbl 0855.34028 MR 1322925 · Zbl 0855.34028
[17] J. Hoppe, A. Laptev, and J. Östensson, Solitons and the removal of eigenvalues for fourth-order differential operators. Int. Math. Res. Not. (2006), article no. 85050 Zbl 1123.34067 MR 2233712 · Zbl 1123.34067
[18] C. G. J. Jacobi, Zur Theorie der Variations-Rechnung und der Differential-Gleichungen. · ERAM 017.0558cj
[19] J. Reine Angew. Math. 17 (1837), 68-82 Zbl 017.0558cj MR 1578150
[20] A. Laptev and T. Weidl, Sharp Lieb-Thirring inequalities in high dimensions. Acta Math. 184 (2000), no. 1, 87-111 Zbl 1142.35531 MR 1756570 · Zbl 1142.35531
[21] B. M. Levitan, Inverse Sturm-Liouville problems. VSP, Zeist, 1987 Zbl 0749.34001 MR 933088 · Zbl 0749.34001
[22] E. H. Lieb, Bounds on the eigenvalues of the Laplace and Schroedinger operators. Bull. Amer. Math. Soc. 82 (1976), no. 5, 751-753 Zbl 0329.35018 MR 407909 · Zbl 0329.35018
[23] E. H. Lieb and W. E. Thirring, Bound for the kinetic energy of Fermions which proves the stability of matter. Phys. Rev. Lett. 35 (1975), 687-689; errata ibid. (1975), 1116
[24] E. H. Lieb and W. E. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities. Studies in Mathemat-ical Physics, pp. 269-303, Princeton University Press, Princeton, NJ, 1976 · Zbl 0342.35044
[25] M. A. Naimark, Linear differential operators. Part I: Elementary theory of linear differen-tial operators. Frederick Ungar, New York, 1967 Zbl 0227.34020 MR 0216050 · Zbl 0219.34001
[26] G. V. Rozenblum, Distribution of the discrete spectrum of singular differential operators. Izv. Vysš. Učebn. Zaved. Matematika (1976), no. 1(164), 75-86 Zbl 0342.35045 MR 0430557 · Zbl 0342.35045
[27] L. Schimmer, Spectral inequalities for Jacobi operators and related sharp Lieb-Thirring inequalities on the continuum. Comm. Math. Phys. 334 (2015), no. 1, 473-505 Zbl 1317.35155 MR 3304283 · Zbl 1317.35155
[28] L. Schimmer, The state of the Lieb-Thirring conjecture. In The physics and mathematics of Elliott Lieb. Vol. II, pp. 253-275, EMS Press, Berlin, 2022 Zbl 1500.81037 MR 4531363 · Zbl 1500.81037
[29] U.-W. Schmincke, On Schrödinger’s factorization method for Sturm-Liouville operators. Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), no. 1-2, 67-84 Zbl 0395.47022 MR 529570 · Zbl 0395.47022
[30] T. Weidl, On the Lieb-Thirring constants L ;1 for 1=2. Comm. Math. Phys. 178 (1996), no. 1, 135-146 Zbl 0858.34075 MR 1387945 · Zbl 0858.34075
[31] V. E. Zaharov and L. D. Faddeev, The Korteweg-de Vries equation is a fully integrable Hamiltonian system. Funkcional. Anal. i Priložen. 5 (1971), no. 4, 18-27;
[32] English transl., Funct. Anal. Appl. 5 (1972), 280-287 Zbl 0257.35074 MR 0303132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.