×

Global exponential convergence of delayed inertial Cohen-Grossberg neural networks. (English) Zbl 1529.34067

Summary: In this paper, the exponential convergence of delayed inertial Cohen-Grossberg neural networks (CGNNs) is studied. Two methods are adopted to discuss the inertial CGNNs, one is expressed as two first-order differential equations by selecting a variable substitution, and the other does not change the order of the system based on the nonreduced-order method. By establishing appropriate Lyapunov function and using inequality techniques, sufficient conditions are obtained to ensure that the discussed model converges exponentially to a ball with the prespecified convergence rate. Finally, two simulation examples are proposed to illustrate the validity of the theorem results.

MSC:

34K25 Asymptotic theory of functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics

References:

[1] D.E. Angelaki, M.J. Correia, Models of membrane resonance in pigeon semicircular canal type II hair cells, Biol. Cybern., 65(1):1-10, 1991, https://doi.org/10.1007/ BF00197284. · doi:10.1007/BF00197284
[2] J.F. Ashmore, D. Attwell, Models for electrical tuning in hair cells, Proc. R. Soc. Lond., Ser. B., 226(1244):325-344, 1985, https://doi.org/doi.org/10.1098/rspb. 1985.0098. · doi:10.1098/rspb.1985.0098
[3] Y. Cao, K. Maheswari, S. Dharani, K. Sivaranjani, New event based state H∞ estimation for discrete-time recurrent delayed semi-markov jump neural networks via a novel summation inequality, J. Artif. Intell. Soft Comput. Res., 12(3):207-221, 2022, https://doi.org/ 10.2478/jaiscr-2022-0014. · doi:10.2478/jaiscr-2022-0014
[4] Y. Cao, S. Ramajayam, R. Sriraman, R. Samidurai, Leakage delay on stabilization of finite-time complex-valued BAM neural network: Decomposition approach, Neurocomputing, 463:505-513, 2021, https://doi.org/10.1016/j.neucom.2021.08.056. · doi:10.1016/j.neucom.2021.08.056
[5] Y. Cao, K. Udhayakumar, K.P. Veerakumari, R. Rakkiyappan, Memory sampled data control for switched-type neural networks and its application in image secure communications, Math. Comput. Simul., 201:564-587, 2022, https://doi.org/10.1016/j.matcom.2021. 03.021. · doi:10.1016/j.matcom.2021.03.021
[6] S.S. Chen, H.J. Jiang, B.L. Lu, Z.Y. Yu, Exponential synchronization for inertial coupled neural networks under directed topology via pinning impulsive control, J. Franklin Inst., 357(3):1671-1689, 2020, https://doi.org/10.1016/j.jfranklin.2019.11.032. · Zbl 1430.93097 · doi:10.1016/j.jfranklin.2019.11.032
[7] X.F. Chen, Z.J. Zhao, Q.K. Song, J. Hu, Multistability of complex-valued neural networks with time-varying delays, Appl. Math. Comput., 294:18-35, 2017, https://doi.org/ 10.1016/j.amc.2016.08.054. · Zbl 1411.34100 · doi:10.1016/j.amc.2016.08.054
[8] T. Fang, J.T. Sun, Stability of complex-valued recurrent neural networks with time-delays, IEEE Trans. Neural Netw. Learn. Syst., 25(9):1709-1713, 2014, https://doi.org/0. 1109/TNNLS.2013.2294638.
[9] S.Q. Gong, S.F. Yang, Z.Y. Guo, T.W. Huang, Global exponential synchronization of inertial memristive neural networks with time-varying delay via nonlinear controller, Neural Netw., 102:138-148, 2018, https://doi.org/10.1016/j.neunet.2018.03.001. · Zbl 1441.93242 · doi:10.1016/j.neunet.2018.03.001
[10] X. He, C.D. Li, Y.L. Shu, Bogdanov-Takens bifurcation in a single inertial neuron model with delay, Neurocomputing, 89:193-201, 2012, https://doi.org/10.1016/j.neucom. 2012.02.019. · doi:10.1016/j.neucom.2012.02.019
[11] J.G. Jian, P. Wan, Global exponential convergence of generalized chaotic systems with multiple time-varying and finite distributed delays, Physica A, 431:152-165, 2015, https://doi. org/10.1016/j.physa.2015.03.001. · Zbl 1400.34116 · doi:10.1016/j.physa.2015.03.001
[12] L. Ke, W.L. Li, Exponential synchronization in inertial Cohen-Grossberg neural networks with time delays, J. Franklin Inst., 356(18):11285-11304, 2019, https://doi.org/10. 1016/j.jfranklin.2019.07.027. · Zbl 1427.93203 · doi:10.1016/j.jfranklin.2019.07.027
[13] F.C. Kong, Y. Ren, R. Sakthivel, New criteria on periodicity and stabilization of discontinuous uncertain inertial Cohen-Grossberg neural networks with proportional delays, Chaos Solitons Fractals, 150:111148, 2021, https://doi.org/10.1016/j.chaos.2021. 111148. · Zbl 1498.34183 · doi:10.1016/j.chaos.2021.111148
[14] F.C. Kong, Q.X. Zhu, R. Sakthivel, Finite-time stabilization of discontinuous fuzzy inertial Cohen-Grossberg neural networks with mixed time-varying delays, Nonlinear Anal. Model. Control, 26(5):759-780, 2021, https://doi.org/10.15388/namc.2021. 26.23935. https://www.journals.vu.lt/nonlinear-analysis · Zbl 1485.93517 · doi:10.15388/namc.2021.26.23935
[15] H.F. Li, C.D. Li, T.W. Huang, W.L. Zhang, Fixed-time stabilization of impulsive Cohen-Grossberg BAM neural networks, Neural Netw., 98:203-211, 2018, https://doi.org/ 10.1016/j.neunet.2017.11.017. · Zbl 1441.93204 · doi:10.1016/j.neunet.2017.11.017
[16] L.L. Li, J.G. Jian, Exponential convergence and Lagrange stability for impulsive Cohen-Grossberg neural networks with time-varying delays, J. Comput. Appl. Math., 277:23-35, 2015, https://doi.org/10.1016/j.cam.2014.08.029. · Zbl 1307.34117 · doi:10.1016/j.cam.2014.08.029
[17] X.Y. Li, X.T. Li, C. Hu, Some new results on stability and synchronization for delayed inertial neural networks based on non-reduced order method, Neural Netw., 96:91-100, 2017, https: //doi.org/10.1016/j.neunet.2017.09.009. · Zbl 1441.93227 · doi:10.1016/j.neunet.2017.09.009
[18] J.L. Liang, W.Q. Gong, T.W. Huang, Multistability of complex-valued neural networks with discontinuous activation functions, Neural Netw., 84:125-142, 2016, https://doi.org/ 10.1016/j.neunet.2016.08.008. · Zbl 1432.34104 · doi:10.1016/j.neunet.2016.08.008
[19] S. Oucheriah, Adaptive robust control of a class of dynamic delay systems with unknown uncertainty bounds, Int. J. Adapt. Control Signal Process., 15(1):53-63, 2001, https://doi.org/10.1002/1099-1115(200102)15:1<53::AID- · Zbl 0982.93066 · doi:10.1002/1099-1115(200102)15:1<53::AID-ACS627>3.0.CO;2-E
[20] D.X. Peng, X.D. Li, C. Aouiti, F. Miaadi, Finite-time synchronization for Cohen-Grossberg neural networks with mixed time-delays, Neurocomputing, 294:39-47, 2018, https:// doi.org/10.1016/j.neucom.2018.03.008. · doi:10.1016/j.neucom.2018.03.008
[21] J.C. Shi, Z.G. Zeng, Global exponential stabilization and lag synchronization control of inertial neural networks with time delays, Neural Netw., 126:11-20, 2020, https://doi.org/ 10.1016/j.neunet.2020.03.006. · Zbl 1471.93226 · doi:10.1016/j.neunet.2020.03.006
[22] Y.C. Shi, J.D. Cao, Finite-time synchronization of memristive Cohen-Grossberg neural networks with time delays, Neurocomputing, 377:159-167, 2020, https://doi.org/ 10.1016/j.neucom.2019.10.036. · doi:10.1016/j.neucom.2019.10.036
[23] Q. Tang, J.G. Jian, Global exponential convergence for impulsive inertial complex-valued neural networks with time-varying delays, Math. Comput. Simul., 159:39-56, 2019, https: //doi.org/10.1016/j.matcom.2018.10.009. · Zbl 1540.92030 · doi:10.1016/j.matcom.2018.10.009
[24] Q. Tang, J.G. Jian, Quasi-invariant and attractive sets of inertial neural networks with time-varying and infinite distributed delays, Comput. Appl. Math., 39:1-17, 2020, https:// doi.org/10.1007/s40314-020-01186-8. · Zbl 1449.34263 · doi:10.1007/s40314-020-01186-8
[25] Z.W. Tu, J.D. Cao, T. Hayat, Global exponential stability in Lagrange sense for inertial neural networks with time-varying delays, Neurocomputing, 171:524-531, 2016, https://doi. org/10.1016/j.neucom.2015.06.078. · doi:10.1016/j.neucom.2015.06.078
[26] P. Wan, J.G. Jian, Global convergence analysis of impulsive inertial neural networks with time-varying delays, Neurocomputing, 245:68-76, 2017, https://doi.org/10.1016/j. neucom.2017.03.045. · doi:10.1016/j.neucom.2017.03.045
[27] D.W. Wheeler, W.C. Schieve, Stability and chaos in an inertial two-neuron system, Physica D, 105(4):267-284, 1997, https://doi.org/10.1016/S0167-2789(97)00008-0. · Zbl 1029.92500 · doi:10.1016/S0167-2789(97)00008-0
[28] W.J. Xiong, D.Y. Ma, J.L. Liang, Robust convergence of Cohen-Grossberg neural networks with time-varying delays, Chaos Solitons Fractals, 40(3):1176-1184, 2009, https://doi. org/10.1016/j.chaos.2007.08.072. · Zbl 1197.34147 · doi:10.1016/j.chaos.2007.08.072
[29] M.S. Zhang, D.S. Wang, Robust dissipativity analysis for delayed memristor-based inertial neural network, Neurocomputing, 366:340-351, 2019, https://doi.org/10.1016/j. neucom.2019.08.004. · doi:10.1016/j.neucom.2019.08.004
[30] W. Zhang, T.W. Huang, X. He, C.D. Li, Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses, Neural Netw., 95:102-109, 2017, https://doi.org/10.1016/j.neunet.2017.03.012. · Zbl 1442.34134 · doi:10.1016/j.neunet.2017.03.012
[31] Z.Q. Zhang, S.H. Yu, Global asymptotic stability for a class of complex-valued Cohen-Grossberg neural networks with time delays, Neurocomputing, 171:1158-1166, 2016, https://doi.org/10.1016/j.neucom.2015.07.051. · doi:10.1016/j.neucom.2015.07.051
[32] Z.Q. Zhang, T. Zheng, Global asymptotic stability of periodic solutions for delayed complex-valued Cohen-Grossberg neural networks by combining coincidence degree theory with LMI method, Neurocomputing, 289:220-230, 2018, https://doi.org/10.1016/j. neucom.2018.02.033. · doi:10.1016/j.neucom.2018.02.033
[33] Y.H. Zhou, C.D. Li, L. Chen, T.W. Huang, Global exponential stability of memristive Cohen-Grossberg neural networks with mixed delays and impulse time window, Neurocomputing, 275:2384-2391, 2018, https://doi.org/10.1016/j.neucom.2017.11.011. https://www.journals.vu.lt/nonlinear-analysis · doi:10.1016/j.neucom.2017.11.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.