×

Estimation of the boundary of the limit cycle of Brusselator oscillators by the renormalization group method. (English) Zbl 1529.34036

In this paper, the authors are exploring the limit cycle region in the parameter space of the 2D nonlinear Brusselator model \begin{align*} \dot{x}& = a-(b+1)x+x^2y, \\ \dot{y}& = bx-x^2y, \end{align*} where \(x\), \(y\) are dimensionless variables, and \(a\), \(b\) are positive control parameters.
The work is just an application of renormalisation group method.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34A45 Theoretical approximation of solutions to ordinary differential equations
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
Full Text: DOI

References:

[1] Strogatz, S.; Friedman, M.; Mallinckrodt, AJ; McKay, S., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (1994), College Park: American Institute of Physics, College Park
[2] Tsai, J., Existence of traveling waves in a simple isothermal chemical system with the same order for autocatalysis and decay, Q. Appl. Math., 69, 1, 123-146 (2011) · Zbl 1229.34040 · doi:10.1090/S0033-569X-2010-01236-7
[3] Chen, X.; Qi, Y.; Zhang, Y., Existence of traveling waves of auto-catalytic systems with decay, J. Differ. Equ., 260, 11, 7982-7999 (2016) · Zbl 1387.34070 · doi:10.1016/j.jde.2016.02.009
[4] Prigogine, I.; Lefever, R., Symmetry breaking instabilities in dissipative systems, J. Chem. Phys., 48, 4, 1695-1700 (1968) · doi:10.1063/1.1668896
[5] Yadav, OP; Jiwari, R., A finite element approach to capture turing patterns of autocatalytic Brusselator model, J. Math. Chem., 57, 3, 769-789 (2019) · Zbl 1414.92241 · doi:10.1007/s10910-018-0982-6
[6] Tributsch, H.; Cermak, J.; Nadezhdina, N., Kinetic studies on the tensile state of water in trees, J. Phys. Chem. B, 109, 37, 17693-17707 (2005) · doi:10.1021/jp051242u
[7] Ruth, M. , Hannon, B. : The Brusselator. Modeling dynamic biological systems. In: Modeling Dynamic Systems. Springer, Cham (2014). doi:10.1007/978-3-319-05615-9_10 · Zbl 1314.92003
[8] Gafiychuk, V.; Datsko, B., Stability analysis and limit cycle in fractional system with Brusselator nonlinearities, Phys. Lett. A, 372, 29, 4902-4904 (2008) · Zbl 1221.34010 · doi:10.1016/j.physleta.2008.05.045
[9] Rech, PC, Nonlinear dynamics of two discrete-time versions of the continuous-time Brusselator model, Int. J. Bifurc. Chaos, 29, 10, 1950142 (2019) · Zbl 1435.39001 · doi:10.1142/S0218127419501426
[10] Arioli, G., Computer assisted proof of branches of stationary and periodic solutions, and Hopf bifurcations, for dissipative PDEs, Commun. Nonlinear Sci. Numer. Simul., 105 (2022) · Zbl 1479.35069 · doi:10.1016/j.cnsns.2021.106079
[11] Zhang, W.; Yu, M.; Karimov, A.; Stenflo, L., Intense oscillations in the expansion of an inhomogeneous cylindrical electron-positron layer, Phys. Scr., 88, 5 (2013) · doi:10.1088/0031-8949/88/05/055501
[12] Kwuimy, C.A.K., Nataraj, C.: Recurrence and Joint Recurrence Analysis of Multiple Attractors Energy Harvesting System. Structural Nonlinear Dynamics and Diagnsis. Springer Proceedings in Physics (2015). doi:10.1007/978-3-319-19851-4_6
[13] Chen, L.; Goldenfeld, N.; Oono, Y., Renormalization group and singular perturbations: multiple scales, boundary layers, and reductive perturbation theory, Phys. Rev. E, 54, 1, 376 (1996) · doi:10.1103/PhysRevE.54.376
[14] DeVille, RL; Harkin, A.; Holzer, M.; Josić, K.; Kaper, TJ, Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations, Physica D, 237, 8, 1029-1052 (2008) · Zbl 1145.34331 · doi:10.1016/j.physd.2007.12.009
[15] Banerjee, D.; Bhattacharjee, JK, Renormalization group and Liénard systems of differential equations, J. Phys. A Math. Theor., 43, 6 (2010) · Zbl 1198.34043 · doi:10.1088/1751-8113/43/6/062001
[16] Sarkar, A.; Bhattacharjee, J.; Chakraborty, S.; Banerjee, D., Center or limit cycle: renormalization group as a probe, Eur. Phys. J. D, 64, 2, 479-489 (2011) · doi:10.1140/epjd/e2011-20060-1
[17] Das, D.; Banerjee, D.; Bhattacharjee, JK, Super-critical and sub-critical Hopf bifurcations in two and three dimensions, Nonlinear Dyn., 77, 1, 169-184 (2014) · Zbl 1314.81139 · doi:10.1007/s11071-014-1282-8
[18] Dutta, A.; Das, D.; Banerjee, D.; Bhattacharjee, JK, Estimating the boundaries of a limit cycle in a 2D dynamical system using renormalization group, Commun. Nonlinear Sci. Numer. Simul., 57, 47-57 (2018) · Zbl 1510.34047 · doi:10.1016/j.cnsns.2017.06.010
[19] Dutta, A.; Roy, J.; Banerjee, D., Predicting limit cycle boundaries deep inside parameter space of a 2D biochemical nonlinear oscillator using renormalization group, Int. J. Bifurc. Chaos, 31, 11, 2150162 (2021) · Zbl 1502.34056 · doi:10.1142/S0218127421501625
[20] Epstein, IR; Pojman, JA, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (1998), Oxford: Oxford University Press, Oxford · doi:10.1093/oso/9780195096705.001.0001
[21] Nayfeh, A., Perturbation Methods (1973), Hoboken: Wiley, Hoboken · Zbl 0265.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.