×

Drazin inverse and generalization of core-nilpotent decomposition. (English) Zbl 1529.15004

The authors explore the connection between the Drazin inverse and the core-nilpotent decomposition. The Drazin inverse does not exist in cases where a given element lacks strong \(\pi\)-regularity. Consequently, it becomes interesting to explore the generalization of core-nilpotent decomposition and its association with any extended form of the Drazin inverse, such as the right (left) \(\pi\)-inverse. The paper introduces novel characterizations of the Drazin inverse and its correlation with core-nilpotent decomposition, employing sharp order as a defining criterion.

MSC:

15A09 Theory of matrix inversion and generalized inverses
16E50 von Neumann regular rings and generalizations (associative algebraic aspects)
06A06 Partial orders, general
Full Text: DOI

References:

[1] Bapat, R. B., Jain, S. K., Karantha, M. P. and Raj, M. D., Outer inverses: Characterization and applications, Linear Algebra Appl.528 (2017) 171-184. · Zbl 1398.15004
[2] Ben-Israel, A. and Greville, T. N. E., Generalized Inverses: Theory and Applications (Wiley-Interscience, New York, 1974). · Zbl 0305.15001
[3] Blackwood, B., Jain, S. K., Prasad, K. M. and Srivastava, A. K., Shorted operator relative to a partial order in a regular ring, Commun. Algebra37(11) (2009) 4141-4152. · Zbl 1198.06010
[4] Drazin, M. P., Pseudo-inverses in associative rings and semigroups, Am. Math. Mon.65(7) (1958) 506-514. · Zbl 0083.02901
[5] Gorô, A., Strongly \(\operatorname{\Pi} \)-regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I Math.13(1) (1954) 34-39. · Zbl 0058.02503
[6] Greville, T. N. E., The Souriau-Frame algorithm and the Drazin pseudoinverse, Linear Algebra Appl.6 (1973) 205-208. · Zbl 0247.15004
[7] Hartwig, R. E., More on the Souriau-Frame algorithm and the Drazin inverse, Am. Math. Mon.31(1) (1976) 42-45. · Zbl 0335.15008
[8] Hartwig, R. E., How to partially order regular elements, Jpn. J. Math.25 (1980) 1-13. · Zbl 0442.06006
[9] Jain, S. K. and Prasad, K. M., Right-left symmetry of \(aR\oplusbR=(a+b)R\) in regular rings, J. Pure Appl. Algebra133 (1998) 141-142. · Zbl 0929.16010
[10] Karantha, M. P., Bhat, K. N. and Mishra, N. N., Rank function and outer inverses, Electron. J. Linear Algebra33 (2018) 16-23. · Zbl 1398.15005
[11] Karantha, M. P. and Varkady, S., Generalized core-nilpotent decomposition, J. Anal.29 (2019) 543-550. · Zbl 1472.15003
[12] Kelathaya, U., Varkady, S. and Karantha, M. P., Inverse complements and strongly unit regular elements, J. Algebra Appl.21 (2022) 2250190, https://doi.org/10.1142/S0219498822501900. · Zbl 1517.16033
[13] Mitra, S. K., The minus partial order and shorted matrix, Linear Algebra Appl.83 (1986) 1-27. · Zbl 0605.15004
[14] Mitra, S. K., On group inverses and the sharp order, Linear Algebra Appl.92 (1987) 17-37. · Zbl 0619.15006
[15] Nambooripad, K. S. S., The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc.23 (1980) 249-260. · Zbl 0459.20054
[16] Rao, C. R. and Mitra, S. K., Generalized Inverses of Matrices and its Applications (John Wiley & Sons, 1971). · Zbl 0236.15004
[17] Wang, H., Core-EP decomposition and its applications, Linear Algebra Appl.508 (2016) 289-300. · Zbl 1346.15003
[18] Wang, H. and Liu, X., EP-nilpotent decomposition and its applications, Linear Multilinear Algebra68(8) (2018) 1682-1694. · Zbl 1450.15006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.