×

Some representations of real numbers using integer sequences. (English) Zbl 1529.03276

Summary: The paper describes three models of the real field based on subsets of the integer sequences. The three models are compared to the Harthong-Reeb line. Two of the new models, contrary to the Harthong-Reeb line, provide accurate integer “views” on real numbers at a sequence of growing scales \(B^n\) (\(B\geq 2\)).

MSC:

03F60 Constructive and recursive analysis
03H05 Nonstandard models in mathematics
Full Text: DOI

References:

[1] Boldo, S., Lelay, C. and Melquiond, G. (2016). Formalization of real analysis: a survey of proof assistants and libraries. Mathematical Structures in Computer Science26 (7) 1196-1233. · Zbl 1364.68327
[2] Chollet, A. (2010). Non Classical Formalisms for the Computing Treatment of the Topology and the Discrete Geometry. PhD thesis, Université de La Rochelle.
[3] Chollet, A., Wallet, G., Fuchs, L., Andres, E. and Largeteau-Skapin, G. (2012). Foundational aspects of multiscale digitization. Theoretical Computer Science4662-19. · Zbl 1262.68172
[4] Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G. and Andres, E. (2009). Insight in discrete geometry and computational content of a discrete model of the continuum. Pattern Recognition42 (10) 2220-2228. · Zbl 1178.68614
[5] Ciaffaglione, A. (2003). Certified Reasoning on Real Numbers and Objects in Co-Inductive Type Theory. Theses, Institut National Polytechnique de Lorraine.
[6] Ciaffaglione, A. and Di Gianantonio, P. (2006). A certified, corecursive implementation of exact real numbers. Theoretical Computer Science351 (1) 39-51. · Zbl 1086.68117
[7] Da Col, M.-A. and Tellier, P. (2009). Quasi-linear transformations and discrete tilings. Theoretical Computer Science4102126-2134. · Zbl 1168.68046
[8] Diener, F. and Reeb, G. (1989). Analyse Non Standard. Paris (France): <LQ_NY0CBJ>Hermann. · Zbl 0682.26010
[9] Harthong, J. (1989). Une théorie du continu. In: Les mathématiques non standard, 307-329. · Zbl 0804.03049
[10] Laugwitz, D. (1983). \( \Omega \)-calculus as a generalization of field extension: an alternative approach to nonstandard analysis. In: Nonstandard Analysis - Recent developments, LNM, Springer, 120-133. · Zbl 0511.03031
[11] Magaud, N., Chollet, A. and Fuchs, L. (2015). Formalizing a discrete model of the continuum in Coq from a discrete geometry perspective. Annals of Mathematics and Artificial Intelligence74 (3-4) 309-332. · Zbl 1326.03074
[12] Mazo, L. (2019). Multi-scale arithmetization of linear transformations. Journal of Mathematical Imaging and Vision61 (4) 432-442. · Zbl 1444.03189
[13] Ménissier-Morain, V. (1995). Arithmétique exacte: conception, algorithmique et performances d’une implémentation informatique en précision arbitraire. PhD thesis, Université Paris 7.
[14] Ménissier-Morain, V. (2005). Arbitrary precision real arithmetic: design and algorithms. Journal of Logical and Algebraic Methods in Programming64 (1) 13-39. · Zbl 1080.03042
[15] Schmieden, C. and Laugwitz, D. (1958). Eine erweiterung der infinitesimalrechnung. Mathematische Zeitschrift691-39. · Zbl 0082.04203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.