×

Integer programming formulations and Benders decomposition for the maximum induced matching problem. (English) Zbl 1528.90153

Summary: We investigate the maximum induced matching problem (MIM), which is the problem of finding an induced matching having the largest cardinality on an undirected graph. The problem is known to be NP-hard for general graphs. We first propose a vertex-based integer programming formulation for MIM, which is more compact compared to an edge-based formulation found in the literature. We also introduce the maximum weight induced matching problem (MWIM), which generalizes MIM so that vertices and edges have weights. We adapt the edge-based formulation to MWIM, and propose a quadratic programming formulation of MWIM based on our vertex-based formulation. We then linearize our quadratic programming formulation, and devise a Benders decomposition algorithm that exploits a special structure of the linearized formulation. We also propose valid inequalities and formulation tightening procedures to improve the efficiency of our approach. Our computational tests on a large suite of randomly generated graphs show that our vertex-based formulation and decomposition approach significantly improve the solvability of MIM and MWIM, especially on dense graphs.
The online appendix and data are available at https://doi.org/10.1287/ijoc.2017.0764.

MSC:

90C10 Integer programming
90C35 Programming involving graphs or networks
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)

Software:

LEMON

References:

[1] Balakrishnan H, Barrett CL, Kumar VA, Marathe MV, Thite S (2004) The distance-2 matching problem and its relationship to the MAC-layer capacity of ad hoc wireless networks. IEEE J. Selected Areas Commun. 22(6):1069-1079.Crossref, Google Scholar · doi:10.1109/JSAC.2004.830909
[2] Bodur M, Ekim T, Taşkın ZC (2013) Decomposition algorithms for solving the minimum weight maximal matching problem. Networks 62(4):273-287.Crossref, Google Scholar · Zbl 1338.05212 · doi:10.1002/net.21516
[3] Cameron K (1989) Induced matchings. Discrete Appl. Math. 24(1):97-102.Crossref, Google Scholar · Zbl 0687.05033 · doi:10.1016/0166-218X(92)90275-F
[4] Cameron K, Sritharan R, Tang Y (2003) Finding a maximum induced matching in weakly chordal graphs. Discrete Math. 266(1):133-142.Crossref, Google Scholar · Zbl 1022.05064 · doi:10.1016/S0012-365X(02)00803-8
[5] Chang MS, Chen LH, Hung LJ (2015) Moderately exponential time algorithms for the maximum induced matching problem. Optim. Lett. 9(5):981-998.Crossref, Google Scholar · Zbl 1327.90350 · doi:10.1007/s11590-014-0813-z
[6] Christou IT, Vassilaras S (2013) A parallel hybrid greedy branch and bound scheme for the maximum distance-2 matching problem. Comput. Oper. Res. 40(10):2387-2397.Crossref, Google Scholar · Zbl 1348.90592 · doi:10.1016/j.cor.2013.04.009
[7] Dabrowski KK, Demange M, Lozin VV (2013) New results on maximum induced matchings in bipartite graphs and beyond. Theor. Comput. Sci. 478:33-40.Crossref, Google Scholar · Zbl 1267.68118 · doi:10.1016/j.tcs.2013.01.027
[8] Dezsö B, Jüttner A, Kovács P (2011) LEMON—An open source C++ graph template library. Electronic Notes Theoret. Comput. Sci. 264(5):23-45.Crossref, Google Scholar · doi:10.1016/j.entcs.2011.06.003
[9] Duckworth W, Manlove DF, Zito M (2005) On the approximability of the maximum induced matching problem. J. Discrete Algorithms 3(1):79-91.Crossref, Google Scholar · Zbl 1075.68063 · doi:10.1016/j.jda.2004.05.001
[10] Duckworth W, Wormald N, Zito M (2002) Maximum induced matchings of random cubic graphs. J. Comput. Appl. Math. 142(1):39-50.Crossref, Google Scholar · Zbl 1001.05093 · doi:10.1016/S0377-0427(01)00457-5
[11] Edmonds J (1965) Paths, trees, and flowers. Canadian J. Math. 17(3):449-467.Crossref, Google Scholar · Zbl 0132.20903 · doi:10.4153/CJM-1965-045-4
[12] Fricke G, Laskar R (1992) Strong matchings on trees. Congressus Numerantium 89:239-243.Google Scholar · Zbl 0786.05065
[13] Golumbic MC, Laskar RC (1993) Irredundancy in circular arc graphs. Discrete Appl. Math. 44(1):79-89.Crossref, Google Scholar · Zbl 0783.05059 · doi:10.1016/0166-218X(93)90223-B
[14] Moser H, Sikdar S (2009) The parameterized complexity of the induced matching problem. Discrete Appl. Math. 157(4):715-727.Crossref, Google Scholar · Zbl 1172.05350 · doi:10.1016/j.dam.2008.07.011
[15] Orlovich Y, Finke G, Gordon V, Zverovich I (2008) Approximability results for the maximum and minimum maximal induced matching problems. Discrete Optim. 5(3):584-593.Crossref, Google Scholar · Zbl 1140.90479 · doi:10.1016/j.disopt.2007.11.010
[16] Stockmeyer L, Vazirani V (1982) NP-completeness of some generalizations of the maximum matching problem. Inform. Processing Lett. 15(1):14-19.Crossref, Google Scholar · Zbl 0493.68039 · doi:10.1016/0020-0190(82)90077-1
[17] Taşkın ZC, Cevik M (2013) Combinatorial Benders cuts for decomposing IMRT fluence maps using rectangular apertures. Comput. Oper. Res. 40(9):2178-2186.Crossref, Google Scholar · Zbl 1348.90495 · doi:10.1016/j.cor.2011.07.005
[18] Vassilaras S, · doi:10.1109/PIMRC.2011.6140071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.