×

A discretization of Holst’s action for general relativity. (English) Zbl 1528.83021

Summary: We present a simplicial model for gravity written in terms of a discretized Lorentz connection and a discretized tetrad field. The continuum limit of its action is Holst’s action for general relativity. With the intention of using it to construct spin foam modes for quantum gravity, we write two other equivalent models written in terms of a discretized and constrained \(B\) field. The differences between our model and existing models are most likely inessential in the sense that a quantization would lead to equivalent quantum theories in the Wilsonian continuum limit. Nevertheless, we mention two features leading to possible advantages: Curvature degrees of freedom are described at the level of each 4-simplex. Our model offers a picture of bulk geometry leading to actions for matter couplings that split as a sum over 4-simplices.

MSC:

83C40 Gravitational energy and conservation laws; groups of motions
05E45 Combinatorial aspects of simplicial complexes
83C45 Quantization of the gravitational field
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
81T27 Continuum limits in quantum field theory
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

References:

[1] Perez, A., The spin-foam approach to quantum gravity, Living Rev. Relat., 16, 3 (2013) · Zbl 1320.83008 · doi:10.12942/lrr-2013-3
[2] Rovelli, C.; Vidotto, F., Covariant Loop Quantum Gravity (2015), Cambridge: Cambridge University Press, Cambridge · Zbl 1432.81065
[3] Manrique, E., Oeckl, R., Weber, A., Zapata, J.A.: Loop quantization as a continuum limit. Class. Quant. Grav. 23, 3393-3404 (2006). arXiv:hep-th/0511222 [hep-th] · Zbl 1096.83029
[4] Holst, S., Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action, Phys. Rev. D., 53, 5966-5969 (1996) · doi:10.1103/PhysRevD.53.5966
[5] Engle, J.; Livine, E.; Pereira, R.; Rovelli, C., LQG vertex with finite Immirzi parameter, Nucl. Phys. B, 799, 136-149 (2008) · Zbl 1292.83023 · doi:10.1016/j.nuclphysb.2008.02.018
[6] Regge, T., General relativity without coordinates, Nuovo Cim., 19, 558-571 (1961) · doi:10.1007/BF02733251
[7] Dittrich, B.; Speziale, S., Area-angle variables for general relativity, New J. Phys., 10 (2008) · doi:10.1088/1367-2630/10/8/083006
[8] Asante, S.K., Dittrich, B., Haggard, H.M.: Effective spin foam models for four-dimensional quantum gravity. Phys. Rev. Lett. 125(23), 231301 (2020). arXiv:2004.07013 [gr-qc]
[9] Asante, S.K., Dittrich, B., Padua-Arguelles, J.: Effective spin foam models for Lorentzian quantum gravity. Class. Quantum Grav. 38(19), 195002 (2021). arXiv:2104.00485 [gr-qc] · Zbl 1510.83024
[10] Asante, S.K., Dittrich, B., Haggard, H.M.: Discrete gravity dynamics from effective spin foams. Class. Quant. Grav. 38(14), 145023 (2021). arXiv:2011.14468 [gr-qc] · Zbl 1482.83042
[11] Donà, P., Gozzini, F., Sarno, G.: Numerical analysis of spin foam dynamics and the flatness problem. Phys. Rev. D 102(10), 106003 (2020). arXiv:2004.12911 [gr-qc] · Zbl 1479.83081
[12] Bahr, B., Steinhaus, S.: Hypercuboidal renormalization in spin foam quantum gravity. Phys. Rev. D 95(12), 126006 (2017). arXiv:1701.02311 [gr-qc]
[13] Han, M., Huang, Z., Liu, H., Qu, D., Wan, Y.: Spinfoam on a Lefschetz thimble: Markov chain Monte Carlo computation of a Lorentzian spinfoam propagator. Phys. Rev. D 103(8), 084026 (2021). arXiv:2012.11515 [gr-qc]
[14] Asante, S.K., Simão, J.D., Steinhaus, S.: Spin-foams as semi-classical vertices: gluing constraints and a hybrid algorithm. arXiv:2206.13540 [gr-qc]
[15] Han, M., Kaminski, W., Liu, H.: Finiteness of spinfoam vertex amplitude with timelike polyhedra and the regularization of full amplitude. Phys. Rev. D 105(8), 084034 (2022) arXiv:2110.01091 [gr-qc]
[16] Livine, E.R.: The spinfoam framework for quantum gravity. arXiv:1101.5061 [gr-qc]
[17] Reisenberger, M.P.: A left-handed simplicial action for Euclidean general relativity. Class. Quantum Grav. 14, 1753-1770 (1997). arXiv:gr-qc/9609002 [gr-qc] · Zbl 0876.53055
[18] Thiemann, T., Modern Canonical Quantum General Relativity, Cambridge Monographs on Mathematical Physics (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1129.83004 · doi:10.1017/CBO9780511755682
[19] Freidel, L., Krasnov, K.: A new spin foam model for 4D gravity. Class. Quantum Gravity 25, 125018 (2008). arXiv:0708.1595 [gr-qc] · Zbl 1144.83007
[20] De Pietri, R., Freidel, L.: so(4) Plebanski action and relativistic spin foam model. Class. Quantum Grav. 16, 2187-2196 (1999) · Zbl 0942.83050
[21] Urbantke, H., On integrability properties of SU(2) Yang-Mill fields. I. Infinitesimal Part, J. Math. Phys., 25, 7, 2321-2324 (1984) · doi:10.1063/1.526402
[22] Reisenberger, M.P.: A lattice worldsheet sum for 4-d Euclidean general relativity. arXiv, e-print, (1997). arXiv:gr-qc/9711052
[23] Freidel, L.; Speziale, S., Twisted geometries: a geometric parametrisation of SU(2) phase space, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.084040
[24] Hartle, JB; Sorkin, R., Boundary terms in the action for the Regge calculus, Gen. Relativ. Gravit., 13, 541-549 (1981) · doi:10.1007/BF00757240
[25] Cheeger, J.; Muller, W.; Schrader, R., On the curvature of piecewise flat spaces, Commun. Math. Phys., 92, 405-454 (1984) · Zbl 0559.53028 · doi:10.1007/BF01210729
[26] Dirac, P., General Theory of Relativity (1996), Princeton: Princeton University Press, Princeton · Zbl 0844.53061 · doi:10.1515/9781400884193
[27] Brown, J.D., Kuchar, K.V.: Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D 51, 5600-5629 (1995). doi:10.1103/PhysRevD.51.5600. arXiv:gr-qc/9409001 [gr-qc]
[28] Bicak, J.J., Kuchar, K.V.: Null dust in canonical gravity. Phys. Rev. D 56, 4878-4895 (1997). doi:10.1103/PhysRevD.56.4878. arXiv:gr-qc/9704053 [gr-qc]
[29] Menotti, P.; Onofri, E., The action of SU \((N)\) lattice Gauge theory in terms of the heat kernel on the group manifold, Nuclear Phys. B, 190, 288-300 (1981) · doi:10.1016/0550-3213(81)90560-5
[30] Gross, DJ; Taylor, W., Two-dimensional QCD is a string theory, Nuclear Phys. B, 400, 181-208 (1993) · Zbl 0941.81586 · doi:10.1016/0550-3213(93)90403-C
[31] Oriti, D.; Pfeiffer, H., A Spin foam model for pure gauge theory coupled to quantum gravity, Phys. Rev. D, 66 (2002) · doi:10.1103/PhysRevD.66.124010
[32] Conrady, F., Hnybida, J.: A spin foam model for general Lorentzian 4-geometries. Class. Quant. Grav. 27, 185011 (2010). arXiv:1002.1959 [gr-qc] · Zbl 1200.83050
[33] Engle, J., Han, M., Thiemann, T.: Canonical path integral measures for Holst and Plebanski gravity. I. Reduced phase space derivation. Class. Quant. Gravity 27, 245014 (2010). arXiv:0911.3433 [gr-qc] · Zbl 1208.83041
[34] Rezende, DJ; Perez, A., 4d Lorentzian Holst action with topological terms, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.064026
[35] Corichi, A., Rubalcava-García, I., Vukašinac, T.: Actions, topological terms and boundaries in first-order gravity: a review. Int. J. Mod. Phys. D 25(4), 1630011 (2016). doi:10.1142/S0218271816300111. arXiv:1604.07764 [gr-qc] · Zbl 1341.83001
[36] Meneses, C., Zapata, J.A.: Macroscopic observables from the comparison of local reference systems. Class. Quant. Gravity 36(23), 235011 (2019). doi:10.1088/1361-6382/ab49a7. arXiv:1905.04797 [gr-qc] · Zbl 1478.83097
[37] Dall’Olio, P., Zapata, J.A.: Homotopy data as part of the lattice field: a first study. Int. J. Mod. Phys. C 33(05), 2250068 (2022). doi:10.1142/S0129183122500681. arXiv:2105.14571 [hep-lat]
[38] Jubb, I., Samuel, J., Sorkin, R., Surya, S.: Boundary and corner terms in the action for general relativity. Class. Quant. Gravity 34(6), 065006 (2017). doi:10.1088/1361-6382/aa6014. arXiv:1612.00149 [gr-qc] · Zbl 1368.83014
[39] Freidel, L., Oliveri, R., Pranzetti, D., Speziale, S.: Extended corner symmetry, charge bracket and Einstein’s equations. JHEP 09, 083 (2021). doi:10.1007/JHEP09(2021)083. arXiv:2104.12881 [hep-th] · Zbl 1472.83012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.