×

Quantum mutual authentication key agreement scheme using five-qubit entanglement towards different realm architecture. (English) Zbl 1528.81074

Summary: In this paper, we propose a scheme of quantum operation teleportation (QOT) utilizing local operations and five-qubit entangled state to achieve mutual authentication and key agreement for two clients in different realms. On the one hand, the scheme not only has the characteristics of the arbitrariness of the relevant operation, the certainty of sharing success and the constancy of entangled resources, but also realizes the mutual authentication among the four parties, ensuring the reliability and security of the task. On the other hand, considering the complexity of the operation, we complete the current QOT task as a whole, so the operation difficulty is low and relatively simple. In summary, our analysis is completely feasible under the existing technical conditions and this proposed scheme has practical significance.

MSC:

81P48 LOCC, teleportation, dense coding, remote state operations, distillation
Full Text: DOI

References:

[1] Saha, D.; Panigrahi, PK, N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-bell channel, Quantum Inf. Process, 11, 615-628 (2012) · doi:10.1007/s11128-011-0270-x
[2] Hou, K.; Bao, DQ; Zhu, CJ; Yang, YP, Controlled teleportation of an arbitrary two-qubit entanglement in noises environment, Quantum Inf. Process, 18, 104 (2019) · Zbl 1417.81061 · doi:10.1007/s11128-019-2218-5
[3] Zhang, ZJ; Li, Y.; Man, ZX, Multiparty quantum secret sharing, Phys. Rev. A, 71, 044301 (2005) · Zbl 1227.81151 · doi:10.1103/PhysRevA.71.044301
[4] Chen, X.; Jiang, M.; Chen, XP; Li, H., Quantum state sharing of an arbitrary three-qubit state by using three sets of W-class states, Quantum Inf. Process, 12, 2405-2416 (2013) · Zbl 1270.81068 · doi:10.1007/s11128-013-0532-x
[5] Xiu, XM; Dong, L.; Gao, YJ; Chi, F., Quantum key distribution protocols with six-photon states against collective noise, Opt. Commun., 282, 4171-4174 (2009) · doi:10.1016/j.optcom.2009.07.012
[6] Tsai, CW; Yang, CW, Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise, Int. J. Theor. Phys., 58, 2244-2250 (2019) · Zbl 1422.81092 · doi:10.1007/s10773-019-04116-5
[7] Wang, ZY; Wang, D.; Han, LF, Optimal remote preparation of a four-qubit entangled cluster-type state via two non-maximally entangled GHZ-type states, Int. J. Theor. Phys., 55, 4371-4383 (2016) · Zbl 1358.81064 · doi:10.1007/s10773-016-3060-5
[8] Wei, JH, Deterministic joint remote preparation of arbitrary multi-qubit states via three-qubit entangled states, Quantum Inf. Process, 18, 237 (2019) · doi:10.1007/s11128-019-2350-2
[9] Yadav, P.; Srikanth, R.; Pathak, A., Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique, Quantum Inf. Process, 13, 2731-2743 (2014) · Zbl 1304.81067 · doi:10.1007/s11128-014-0825-8
[10] He, YF; Ma, WP, Multiparty quantum secure direct communication immune to collective noise, Quantum Inf. Process, 18, 4 (2019) · Zbl 1417.81060 · doi:10.1007/s11128-018-2119-z
[11] Huelga, SF; Vaccaro, JA; Chefles, A., Quantum remote control: teleportation of unitary operations, Phys. Rev. A, 63, 042303 (2001) · Zbl 1255.81109 · doi:10.1103/PhysRevA.63.042303
[12] Zhang, ZJ; Cheung, CY, Shared quantum remote control: quantum operation sharing, J. Phys. B, 44, 165508 (2011) · doi:10.1088/0953-4075/44/16/165508
[13] Peng, J., Tripartite operation sharing with a six-particle maximally entangled state, Quantum Inf. Process, 14, 4255-4262 (2015) · Zbl 1328.81068 · doi:10.1007/s11128-015-1123-9
[14] Zhou, SQ; Bai, MQ; Zhang, CY, Analysis and construction of four-party deterministic operation sharing with a generalized seven-qubit Brown state, Mod. Phys. Lett. B, 31, 1750190 (2017) · doi:10.1142/S0217984917501901
[15] Wang, AM, Remote implementations of partially unknown quantum operations of multiqubits, Phys. Rev. A, 74, 032317 (2007) · doi:10.1103/PhysRevA.74.032317
[16] Zhao, NB; Wang, AM, Hybrid protocol of remote implementations of quantum operations, Phys. Rev. A, 76, 062317 (2007) · doi:10.1103/PhysRevA.76.062317
[17] Xing, H.; Liu, DC; Xing, PF; Xie, CM; Liu, XS; Zhang, ZJ, Deterministic tripartite sharing of eight restricted sets of single-qubit operations with two bell states or a GHZ state, Int. J. Quantum Inf., 12, 1450012 (2014) · Zbl 1301.81028 · doi:10.1142/S0219749914500129
[18] Ji, QB; Liu, YM; Yin, XF; Liu, XS; Zhang, ZJ, Quantum operation sharing with symmetric and asymmetric W states, Quantum Inf. Process, 12, 2453-2464 (2013) · Zbl 1270.81043 · doi:10.1007/s11128-013-0533-9
[19] Ji, QB; Liu, YM; Xie, CM; Yin, XF; Zhang, ZJ, Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures, Quantum Inf. Process, 13, 1659-1676 (2014) · Zbl 1306.81018 · doi:10.1007/s11128-014-0759-1
[20] Xing, H., Four-party deterministic operation sharing with six-qubit cluster state, Quantum Inf. Process, 13, 1553-1562 (2014) · Zbl 1303.81043 · doi:10.1007/s11128-014-0750-x
[21] Duan, YJ; Zha, XW, Remotely sharing a single-qubit operation via a six-qubit entangled state, Int. J. Theor. Phys., 54, 877-883 (2015) · Zbl 1320.81033 · doi:10.1007/s10773-014-2283-6
[22] Ji, QB; Liu, YM; Liu, XS; Yin, XF; Zhang, ZJ, Single-Qubit operation sharing with bell and W product states, Commun. Theor. Phys., 60, 165-170 (2013) · doi:10.1088/0253-6102/60/2/04
[23] Brown, IDK; Stepney, S.; Sudbery, A.; Braunstein, SL, Searching for highly entangled multi-qubit states, J. Phys. A, 38, 1119-1131 (2005) · Zbl 1062.81007 · doi:10.1088/0305-4470/38/5/013
[24] Yuan, H.; Zhang, WB; Yin, XF, T simplistic quantum operation sharing with a five-qubit genuinely entangled state, Quantum Inf. Process, 19, 122 (2020) · Zbl 1508.81347 · doi:10.1007/s11128-020-2620-z
[25] Ye, BL; Liu, YM; Liu, XS; Zhang, ZJ, Remotely sharing a single-qubit operation with a five-qubit genuine state, Chin. Phys. Lett., 30, 020301 (2013) · doi:10.1088/0256-307X/30/2/020301
[26] Peng, J., Tripartite operation sharing with five-qubit Brown state, Quantum Inf. Process, 15, 2465-2473 (2016) · Zbl 1348.81105 · doi:10.1007/s11128-016-1281-4
[27] Deng, FG; Zhou, HY; Long, GL, Bidirectional quantum secret sharing and secret splitting with polarized single photons, Phys. Lett. A, 337, 329-334 (2005) · Zbl 1136.81333 · doi:10.1016/j.physleta.2005.02.001
[28] Zhang, ZJ, Improving the security of multiparty quantum secret sharing against Trojan horse attack, Phys. Rev. A, 72, 044302 (2005) · doi:10.1103/PhysRevA.72.044302
[29] Xiao, L.; Long, GL, Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A, 69, 052307 (2004) · doi:10.1103/PhysRevA.69.052307
[30] Long, GL; Liu, XS, Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A, 65, 032302 (2002) · doi:10.1103/PhysRevA.65.032302
[31] Zhou, P.; Li, XH, Multiparty quantum secret sharing with pure entangled states and decoy photons, Chin. Phys. Lett., 22, 1049 (2005) · doi:10.1088/0256-307X/22/5/006
[32] Li, CY; Li, XH, Efficient quantum cryptography network without entanglement and quantum memory, Chin. Phys. Lett., 23, 2896 (2006) · doi:10.1088/0256-307X/23/11/004
[33] Single-Qubit Operation Sharing with Bell and W Product States[J]. Communications in Theoretical Physics, 60(2), 165-170 (2013)
[34] Ji, Q.; Liu, Y.; Yin, X.; Liu, X.; Zhang, Z., Quantum operation sharing with symmetric and asymmetric W states[J], Quantum Inf. Process, 12, 7, 2453-2464 (2013) · Zbl 1270.81043 · doi:10.1007/s11128-013-0533-9
[35] Yuan H , Zhang W B, Yin X F. Simplistic quantum operation sharing with a five-qubit genuinely entangled state. Quantum Inf Process 19, 122 (2020) · Zbl 1508.81347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.