×

Hierarchical quantum teleportation of arbitrary single-qubit state by using four-qubit cluster state. (English) Zbl 1528.81073

Summary: How far is the distance between the two is obtained through mutually entangled particles. A far as long as the state of one particle changes, so as the state of the other particle instantaneously change. We present a scheme for hierarchical quantum teleportation via a four-qubit cluster state, where a sender distributes asymmetrically a quantum state to distant agents. This asymmetrically distribution leads to different agents to have different authority to reconstruct the secret quantum information. Furthermore, the hierarchical quantum teleportation of an arbitrary single-qubit state can be realized in cavity quantum electrodynamics (QED) systems.

MSC:

81P48 LOCC, teleportation, dense coding, remote state operations, distillation
Full Text: DOI

References:

[1] Bennett, C-H; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, AR; Wootters, W-K, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 13, 1895 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[2] Hillery, M.; Bužek, V.; Berthiaume, A., Quantum secret sharing, Phys. Rev. A, 59, 1, 1829 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[3] Murao, M.; Jonathan, D.; Plenio, M-B; Vedral, V., Quantum telecloning and multiparticle entanglement, Phys. Rev. A, 59, 1, 156 (1999) · doi:10.1103/PhysRevA.59.156
[4] Cleve, R.; Gottesman, D.; Lo, H-K, How to share a quantum secret, Phys. Rev. Lett., 83, 3, 648 (1999) · doi:10.1103/PhysRevLett.83.648
[5] Wang, X-W; Zhang, D-Y; Tang, S-Q; Xie, L-J, Multiparty hierarchical quantum-information splitting, J. Phys. B Atomic Mol. Opt. Phys., 44, 3, 035505 (2011) · doi:10.1088/0953-4075/44/3/035505
[6] Wang, X-W; Zhang, D-Y; Tang, S-Q; Zhan, X-G; You, K-M, Hierarchical Quantum Information Splitting with Six-Photon Cluster States, Int. J. Theor. Phys, 49, 2691-2697 (2010) · Zbl 1203.81050 · doi:10.1007/s10773-010-0461-8
[7] Wang, X-W; Xia, L-X; Wang, Z-Y; Zhang, D-Y, Hierarchical quantum-information splitting, Opt. Commun, 283, 6, 1196-1199 (2010) · doi:10.1016/j.optcom.2009.11.015
[8] D. Gottesman, “Theory of quantum secret sharing,” Phys. Rev. A, vol.61, no.4, pp.042311. 2000
[9] Xiang, Y.; Mo, Z-W, Quantum secret sharing protocol based on four-dimensional three-particle entangled states, Mod. Phys. Lett. B., 30, 2, 1550267 (2016) · doi:10.1142/S021798491550267X
[10] Wang, H-X; Xing, C-P, Explicit constructions of perfect hash families from algebraic curves over finite fields, J. Comb. Theory., 93, 1, 112-124 (2001) · Zbl 1015.11027 · doi:10.1006/jcta.2000.3068
[11] Wang, X-W; Su, Y-H; Yang, G-J, Controlled teleportation against uncooperation of part of supervisors, Quantum Inf. Processing, 8, 4, 319-330 (2009) · Zbl 1181.81020 · doi:10.1007/s11128-009-0107-z
[12] Tao, M.-J., Hua, M., Ai, Q., Deng, F.-G.: Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A. 91(6) (pp.062325.Jun.2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.