×

Sample size calculation for the combination test under nonproportional hazards. (English) Zbl 1528.62061

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] Ananthakrishnan, R., Green, S., Previtali, A., Liu, R., Li, D., & LaValley, M. (2021). Critical review of oncology clinical trial design under non‐proportional hazards. Critical Reviews in Oncology/Hematology, 162, 103350.
[2] Borghaei, H., Paz‐Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., Chow, L. Q., Vokes, E. E., Felip, E., Holgado, E., Barlesi, F., Kohlhäufl, M., Arrieta, O., Burgio, M. A., Fayette, J., Lena, H., Poddubskaya, E., Gerber, D. E., Gettinger, S. N., … Brahmer, J. R. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-small‐cell lung cancer. New England Journal of Medicine, 373(17), 1627-1639.
[3] Brendel, M., Janssen, A., Mayer, C.‐D., … Pauly, M. (2014). Weighted logrank permutation tests for randomly right censored life science data. Scandinavian Journal of Statistics, 41(3), 742-761. · Zbl 1309.62164
[4] Breslow, N. E., Edler, L., & Berger, J. (1984). A two‐sample censored‐data rank test for acceleration. Biometrics, 40, 1049-1062. · Zbl 0562.62042
[5] Cheng, H., & He, J. (2021). A maximum weighted logrank test in detecting crossing hazards. arXiv. https://doi.org/10.48550/arXiv.2110.03833 · doi:10.48550/arXiv.2110.03833
[6] Ditzhaus, M., & Friedrich, S. (2020). More powerful logrank permutation tests for two‐sample survival data. Journal of Statistical Computation and Simulation, 90, 2209-2227. · Zbl 07480170
[7] Freedman, L. S. (1982). Tables of the number of patients required in clinical trials using the logrank test. Statistics in Medicine, 1(2), 121-129.
[8] Garès, V., Andrieu, S., Dupuy, J.‐F., & Savy, N. (2015). An omnibus test for several hazard alternatives in prevention randomized controlled clinical trials. Statistics in Medicine, 34(4), 541-557.
[9] Hasegawa, T. (2014). Sample size determination for the weighted log‐rank test with the Fleming-Harrington class of weights in cancer vaccine studies. Pharmaceutical Statistics, 13(2), 128-135.
[10] Hasegawa, T. (2016). Group sequential monitoring based on the weighted log‐rank test statistic with the Fleming-Harrington class of weights in cancer vaccine studies. Pharmaceutical Statistics, 15(5), 412-419.
[11] Jachno, K., Heritier, S., & Wolfe, R. (2019). Are non‐constant rates and non‐proportional treatment effects accounted for in the design and analysis of randomised controlled trials? A review of current practice. BMC Medical Research Methodology, 19(1), 103.
[12] Kantoff, P. W., Higano, C. S., Shore, N. D., Berger, E. R., Small, E. J., Penson, D. F., Redfern, C. H., Ferrari, A. C., Dreicer, R., Sims, R. B., Xu, Y., Frohlich, M. W., & Schellhammer, P. F. (2010). Sipuleucel‐t immunotherapy for castration‐resistant prostate cancer. New England Journal of Medicine, 363(5), 411-422.
[13] Kosorok, M. R., & Lin, C.‐Y. (1999). The versatility of function‐indexed weighted log‐rank statistics. Journal of the American Statistical Association, 94(445), 320-332. · Zbl 1072.62575
[14] Lakatos, E. (1986). Sample size determination in clinical trials with time‐dependent rates of losses and noncompliance. Controlled Clinical Trials, 7(3), 189-199.
[15] Lakatos, E. (1988). Sample sizes based on the log‐rank statistic in complex clinical trials. Biometrics, 44, 229-241. · Zbl 0707.62262
[16] Lee, J. W. (1996). Some versatile tests based on the simultaneous use of weighted log‐rank statistics. Biometrics, 52, 721-725. · Zbl 0875.62169
[17] Lin, R. S., Lin, J., Roychoudhury, S., Anderson, K. M., Hu, T., Huang, B., Leon, L. F., Liao, J. J., Liu, R., Luo, X., Mukhopadhyay, P., Qin, R., Tatsuoka, K., Wang, X., Wang, Y., Zhu, J., Chen, T.‐T., & Iacona, R. (2020). Alternative analysis methods for time to event endpoints under nonproportional hazards: A comparative analysis. Statistics in Biopharmaceutical Research, 12(2), 187-198.
[18] Mok, T., Kim, D., Wu, Y., Nakagawa, K., Mekhail, T., Felip, E., Cappuzzo, F., Paolini, J., Usari, T., Wilner, K., Blackhall, F., & Solomon, B. J. (2017). Overall survival (OS) for first‐line Crizotinib versus chemotherapy in ALK+ lung cancer: Updated results from PROFILE 1014. Annals of Oncology, 28, 637.
[19] Phadnis, M. A., & Mayo, M. S. (2021). Sample size calculation for two‐arm trials with time‐to‐event endpoint for nonproportional hazards using the concept of relative time when inference is built on comparing Weibull distributions. Biometrical Journal, 63(7), 1406-1433. · Zbl 1523.62182
[20] Phadnis, M. A., Wetmore, J. B., & Mayo, M. S. (2017). A clinical trial design using the concept of proportional time using the generalized gamma ratio distribution. Statistics in Medicine, 36(26), 4121-4140.
[21] Roychoudhury, S., Anderson, K. M., Ye, J., & Mukhopadhyay, P. (2021). Robust design and analysis of clinical trials with nonproportional hazards: A straw man guidance from a cross‐pharma working group. Statistics in Biopharmaceutical Research. Advanced online publication. https://doi.org/10.1080/19466315.2021.1874507 · doi:10.1080/19466315.2021.1874507
[22] Royston, P., & Parmar, M. K. (2013). Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time‐to‐event outcome. BMC Medical Research Methodology, 13(1), 1-15.
[23] Schoenfeld, D. (1981). The asymptotic properties of nonparametric tests for comparing survival distributions. Biometrika, 68(1), 316-319.
[24] Wang, L., Luo, X., & Zheng, C. (2021). A simulation‐free group sequential design with Max‐combo tests in the presence of non‐proportional hazards. Pharmaceutical Statistics, 20, 879-897.
[25] Xiong, X., & Wu, J. (2017). A novel sample size formula for the weighted log‐rank test under the proportional hazards cure model. Pharmaceutical Statistics, 16(1), 87-94.
[26] Xu, Z., Zhen, B., Park, Y., & Zhu, B. (2017). Designing therapeutic cancer vaccine trials with delayed treatment effect. Statistics in Medicine, 36(4), 592-605.
[27] Zhang, D., & Quan, H. (2009). Power and sample size calculation for log‐rank test with a time lag in treatment effect. Statistics in Medicine, 28(5), 864-879.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.