×

\(p\)-adic weaving multiframelets. (English) Zbl 1528.42039

Summary: Frames play significant role as redundant building blocks in distributed signal processing. Getting inspirations from this concept, T. Bemrose et al. [Oper. Matrices 10, No. 4, 1093–1116 (2016; Zbl 1358.42025)] produced the notion of weaving frames in Hilbert space. Weaving frames have useful applications in sensor networks, likewise weaving \(K\)-frames have been proved to be useful during signal reconstructions from the range of a bounded linear operator \(K\). This article presents a flavor of weaving multiframelets. Various properties of weaving multiframelets are explored in the \(p\)-adic number field. Furthermore, several characterizations of \(p\)-adic weaving multiframelets have been analyzed.

MSC:

42C15 General harmonic expansions, frames
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

Citations:

Zbl 1358.42025
Full Text: DOI

References:

[1] Duffin, R.; Schaeffer, A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72, 2, 341-366 (1952) · Zbl 0049.32401 · doi:10.1090/S0002-9947-1952-0047179-6
[2] Daubechies, I., Painless nonorthogonal expansions, J. Math. Phys., 27, 5, 1271-1283 (1986) · Zbl 0608.46014 · doi:10.1063/1.527388
[3] Sun, W., \(G\)-frames and \(G\)-Riesz bases, J. Math. Anal. Appl., 322, 1, 437-452 (2006) · Zbl 1129.42017 · doi:10.1016/j.jmaa.2005.09.039
[4] Gǎvruţa, L., Frames for operators, Appl. Comput. Harm. Anal., 32, 1, 139-144 (2012) · Zbl 1230.42038 · doi:10.1016/j.acha.2011.07.006
[5] Casazza, P. G.; Kutyniok, G., Frames of subspaces, Contemp. Math. AMS, 345, 87-114 (2004) · Zbl 1058.42019 · doi:10.1090/conm/345/06242
[6] Bhandari, A.; Mukherjee, S., Atomic subspaces for operators, Indian J. Pure Appl. Math, 51, 3, 1039-1052 (2020) · Zbl 1456.42037 · doi:10.1007/s13226-020-0448-y
[7] Ferreira, P., Mathematics for multimedia signal processing II: discrete finite frames and signal reconstruction, Signal Proc. Multim., 0, 35-54 (1999) · Zbl 1007.94523
[8] Casazza, P. G.; Kutyniok, G.; Li, S.; Rozell, C. J., Modeling sensor networks with fusion frames (2007) · doi:10.1117/12.730719
[9] Mishra, S.; Chakraborty, S., Dynamical system analysis of Einstein Skyrme model in a Kantowski-Sachs spacetime, Annal. Phys., 406, 207-219 (2019) · Zbl 1423.83105 · doi:10.1016/j.aop.2019.04.006
[10] Koblitz, N., \(p\)-Adic Numbers, \(p\)-Adic Analysis, and Zeta Functions (1977), Berlin: Springer, Berlin · Zbl 0364.12015 · doi:10.1007/978-1-4684-0047-2
[11] Dragovich, B.; Khrennikov, A. Y.; Kozyrev, S. V.; Volovich, I. V., On \(p\)-adic mathematical physics, p-Adic Numb. Ultrametr. Anal. Appl., 1, 1-17 (2009) · Zbl 1187.81004 · doi:10.1134/S2070046609010014
[12] Khrennikov, A. Y.; Kozyrev, S. V., Wavelets on ultrametric spaces, Appl. Comput. Harm. Anal., 19, 61-76 (2005) · Zbl 1079.42028 · doi:10.1016/j.acha.2005.02.001
[13] Albeverio, S.; Kozyrev, S. V., Multidimensional basis of \(p\)-adic wavelets and representation theory, p-Adic Numb. Ultrametr. Anal. Appl., 1, 181-189 (2009) · Zbl 1187.42030 · doi:10.1134/S2070046609030017
[14] Haldar, D.; Singh, D., \(p\)-Adic multiwavelet sets, p-Adic Numb. Ultrametr. Anal. Appl., 11, 192-204 (2019) · Zbl 1434.42049 · doi:10.1134/S2070046619030026
[15] Kozyrev, S. V., Wavelet analysis as a \(p\)-adic spectral analysis, Izvestiya: Math., 66, 2, 367-376 (2002) · Zbl 1016.42025 · doi:10.1070/IM2002v066n02ABEH000381
[16] Khrennikov, A. Y.; Shelkovich, V. M., Non-Haar \(p\)-adic wavelets and their application to pseudo-differential operators and equations, Appl. Comput. Harm. Anal., 28, 1, 1-23 (2009) · Zbl 1184.46066 · doi:10.1016/j.acha.2009.05.007
[17] Bemrose, T.; Casazza, P. G.; Gröchenig, K.; Lammers, M. C.; Lynch, R. G., Weaving frames, Operat. Matric., 10, 4, 1093-1116 (2016) · Zbl 1358.42025 · doi:10.7153/oam-10-61
[18] P. G. Casazza and R. G. Lynch, Weaving Properties of Hilbert Space Frames, International Conference on Sampling Theory and Applications (SampTA), (2015).
[19] Bhandari, A.; Mukherjee, S., Characterizations of woven frames, Int. J. Wavel. Multires. Inf. Process., 18, 5, 37-49 (2020) · Zbl 1454.42026
[20] Deepshikha; Vashisht, L. K., Weaving \(K\)-frames in Hilbert spaces, Results Math., 73 (2018) · Zbl 1407.42022 · doi:10.1007/s00025-018-0843-4
[21] Bhandari, A.; Borah, D.; Mukherjee, S., Characterizations of weaving \(K\)-frames, Proc. Japan Acad. Ser. A Math. Sci., 96, 5, 39-43 (2020) · Zbl 1442.42070 · doi:10.3792/pjaa.96.008
[22] Christensen, O., Frames and Bases-An Introductory Course (2008), Boston: Birkhäuser, Boston · Zbl 1152.42001 · doi:10.1007/978-0-8176-4678-3
[23] Casazza, P. G.; Kutyniok, G., Finite Frames: Theory and Applications (2012), Boston: Birkhäuser, Boston · Zbl 1257.42001
[24] Benedetto, J. J.; Fickus, M., Finite normalized tight frames, Adv. Comput. Math., 18, 357-385 (2003) · Zbl 1028.42022 · doi:10.1023/A:1021323312367
[25] Douglas, R. G., On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc., 17, 413-416 (1966) · Zbl 0146.12503 · doi:10.1090/S0002-9939-1966-0203464-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.