×

Nonlocal Harnack inequality for fractional elliptic equations with Orlicz growth. (English) Zbl 1528.35224

Summary: We prove Harnack inequality for weak solutions to nonlinear nonlocal equations of fractional \(G\)-Laplace type, under natural assumptions on the \(N\)-function \(G\).
© 2023 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

MSC:

35R11 Fractional partial differential equations
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
35B65 Smoothness and regularity of solutions to PDEs
35D30 Weak solutions to PDEs
47G20 Integro-differential operators
Full Text: DOI

References:

[1] P.Baroni, Riesz potential estimates for a general class of quasilinear equations, Calc. Var. Partial Differential Equations53 (2015), no. 3-4, 803-846. · Zbl 1318.35041
[2] J.Bourgain, H.Brezis, and P.Mironescu, Limiting embedding theorems for \(W^{s,p}\) when \(s\uparrow 1\) and applications, J. Anal. Math.87 (2002), 77-101. · Zbl 1029.46030
[3] L.Brasco and E.Lindgren, Higher Sobolev regularity for the fractional \(p\)‐Laplace equation in the superquadratic case, Adv. Math.304 (2017), 300-354. · Zbl 1364.35055
[4] L.Brasco, E.Lindgren, and A.Schikorra, Higher Hölder regularity for the fractional \(p\)‐Laplacian in the superquadratic case, Adv. Math.338 (2018), 782-846. · Zbl 1400.35049
[5] S.Byun and Y.Cho, Nonlinear gradient estimates for generalized elliptic equations with nonstandard growth in nonsmooth domains, Nonlinear Anal.140 (2016), 145-165. · Zbl 1338.35167
[6] S.Byun, H.Kim, and J.Ok, Local Hölder continuity for fractional nonlocal equations with general growth, Math. Ann., to appear. https://doi.org/10.1007/s00208‐022‐02472‐y. · Zbl 1522.35543 · doi:10.1007/s00208‐022‐02472‐y
[7] S.Byun, J.Ok, and K.Song, Hölder regularity for weak solutions to nonlocal double phase problems, J. Math. Pures Appl. (9)168 (2022), 110-142. · Zbl 1504.35104
[8] S.Byun and K.Song, Mixed local and nonlocal equations with measure data, Calc. Var. Partial Differential Equations62 (2023), no. 1, Paper No. 14. · Zbl 1509.31022
[9] L.Caffarelli, C. H.Chan, and A.Vasseur, Regularity theory for parabolic nonlinear integral operators, J. Amer. Math. Soc.24 (2011), no. 3, 849-869. · Zbl 1223.35098
[10] L.Caffarelli and L.Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations32 (2007), no. 7-9, 1245-1260. · Zbl 1143.26002
[11] J.Chaker and M.Kim, Local regularity for nonlocal equations with variable exponents, arXiv:2107.06043.
[12] J.Chaker, M.Kim, and M.Weidner, Regularity for nonlocal problems with non‐standard growth, Calc. Var. Partial Differential Equations61 (2022), no. 6, Paper No. 227. · Zbl 1501.35106
[13] J.Chaker, M.Kim, and M.Weidner, Harnack inequality for nonlocal problems with non‐standard growth, Math. Ann., to appear. https://doi.org/10.1007/s00208‐022‐02405‐9. · Zbl 1515.35082 · doi:10.1007/s00208‐022‐02405‐9
[14] M.Cozzi, Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes, J. Funct. Anal.272 (2017), no. 11, 4762-4837. · Zbl 1366.49040
[15] C.De Filippis and G.Mingione, Gradient regularity in mixed local and nonlocal problems, Math. Ann., to appear. https://doi.org/10.1007/s00208‐022‐02512‐7. · Zbl 1532.49035 · doi:10.1007/s00208‐022‐02512‐7
[16] C.De Filippis and G.Palatucci, Hölder regularity for nonlocal double phase equations, J. Differential Equations267 (2019), no. 1, 547-586. · Zbl 1412.35041
[17] A.Di Castro, T.Kuusi, and G.Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal.267 (2014), no. 6, 1807-1836. · Zbl 1302.35082
[18] A.Di Castro, T.Kuusi, and G.Palatucci, Local behavior of fractional \(p\)‐minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire33 (2016), no. 5, 1279-1299. · Zbl 1355.35192
[19] L.Diening, B.Stroffolini, and A.Verde, Everywhere regularity of functionals with \(\phi \)‐growth, Manuscripta Math.129 (2009), no. 4, 449-481. · Zbl 1168.49035
[20] Y.Fang and C.Zhang, Harnack inequality for the nonlocal equations with general growth, Proc. Roy. Soc. Edinburgh Sect. A., to appear. https://doi.org/10.1017/prm.2022.55. · Zbl 1523.35281 · doi:10.1017/prm.2022.55
[21] Y.Fang and C.Zhang, On weak and viscosity solutions of nonlocal double phase equations, Int. Math. Res. Not. IMRN (2023), no. 5, 3746-3789. https://doi.org/10.1093/imrn/rnab351. · Zbl 1520.35159 · doi:10.1093/imrn/rnab351
[22] J.Fernández Bonder, A.Salort, and H.Vivas, Interior and up to the boundary regularity for the fractional \(g\)‐Laplacian: the convex caseNonlinear Anal.223 (2022), Paper No. 113060, 31. · Zbl 1497.35274
[23] J.Fernández Bonder, A.Salort, and H.Vivas, Global Hölder regularity for eigenfunctions of the fractional \(g\)‐Laplacian, J. Math. Anal. Appl.526 (2023), no. 1, Paper No. 127332. · Zbl 1518.35336
[24] G.Franzina and G.Palatucci, Fractional \(p\)‐eigenvalues, Riv. Math. Univ. Parma (N.S.)5 (2014), no. 2, 373-386. · Zbl 1327.35286
[25] P.Garain and J.Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, Trans. Amer. Math. Soc.375 (2022), no. 8, 5393-5423. · Zbl 1496.35118
[26] E.Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co. Inc., River Edge, NJ, 2003. · Zbl 1028.49001
[27] P.Harjulehto and P.Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019. · Zbl 1436.46002
[28] M.Kassmann, The classical Harnack inequality fails for non‐local operators. Available at https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=06e6010834fe0697ed2513a3fc3a797f0e30059d.
[29] M.Kassmann, Harnack inequalities and Hölder regularity estimates for nonlocal operators revisited. Available at https://sfb701.math.uni-bielefeld.de/preprints/sfb11015.pdf.
[30] J.Korvenpää, T.Kuusi, and G.Palatucci, The obstacle problem for nonlinear integro‐differential operators, Calc. Var. Partial Differential Equations55 (2016), no. 3, Art. 63, 29. · Zbl 1346.35214
[31] J.Korvenpää, T.Kuusi, and G.Palatucci, Fractional superharmonic functions and the Perron method for nonlinear integro‐differential equations, Math. Ann.369 (2017), no. 3-4, 1443-1489. · Zbl 1386.35028
[32] T.Kuusi, G.Mingione, and Y.Sire, Nonlocal equations with measure data, Comm. Math. Phys.337 (2015), no. 3, 1317-1368. · Zbl 1323.45007
[33] T.Kuusi, G.Mingione, and Y.Sire, Nonlocal self‐improving properties, Anal. PDE8 (2015), no. 1, 57-114. · Zbl 1317.35284
[34] G. M.Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, Comm. Partial Differential Equations16 (1991), no. 2-3, 311-361. · Zbl 0742.35028
[35] M.Manfredini, G.Palatucci, M.Piccinini, and S.Polidoro, Hölder continuity and boundedness estimates for nonlinear fractional equations in the Heisenberg group, J. Geom. Anal.33 (2023), no. 3, Paper No. 77, 41. · Zbl 1506.35026
[36] E.Mascolo and G.Papi, Harnack inequality for minimizers of integral functionals with general growth conditions, NoDEA Nonlinear Differential Equations Appl.3 (1996), no. 2, 231-244. · Zbl 0855.49027
[37] M.Mihăilescu and V.Rădulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier (Grenoble)58 (2008), no. 6, 2087-2111. · Zbl 1186.35065
[38] J.Ok, Regularity of \(\omega \)‐minimizers for a class of functionals with non‐standard growth, Calc. Var. Partial Differential Equations56 (2017), no. 2, Paper No. 48, 31. · Zbl 1369.49050
[39] J.Ok, Partial Hölder regularity for elliptic systems with non‐standard growth, J. Funct. Anal.274 (2018), no. 3, 723-768. · Zbl 1393.35041
[40] J.Ok, Local Hölder regularity for nonlocal equations with variable powers, Calc. Var. Partial Differential Equations62 (2023), no. 1, Paper No. 32. · Zbl 1507.35330
[41] G.Palatucci and M.Piccinini, Nonlocal Harnack inequalities in the Heisenberg group, Calc. Var. Partial Differential Equations61 (2022), no. 5, Paper No. 185, 30. · Zbl 1495.35055
[42] A.Sen, A note on Hopf’s lemma and strong minimum principle for nonlocal equations with non‐standard growth, arXiv:2208.13498.
[43] F.Yao and S.Zhou, Calderón‐Zygmund estimates for a class of quasilinear elliptic equations, J. Funct. Anal.272 (2017), no. 4, 1524-1552. · Zbl 1360.35072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.