×

Rational approximation of holomorphic maps. (Approximation rationnelle des applications holomorphes.) (English. French summary) Zbl 1528.32040

Let \(X\) be a complex algebraic manifold, \(K\) a compact holomorphically convex subset of \(X\), and \(Y\) an algebraic manifold homogeneous for some complex linear algebraic group. The main theorem states that a holomorphic map \(f\colon K\to Y\) can be approximated by regular maps from \(K\) to \(Y\) if and only if \(f\) is homotopic to a regular map from \(K\) to \(Y\). Consequently, every null homotopic holomorphic map from \(K\) to \(Y\) can be approximated by regular maps from \(K\) to \(Y\). The authors provide an example of a null homotopic holomorphic map from \(K\) to \(Y\) that does not admit approximation by regular maps from \(X\) to \(Y\). It is known that if \(Y\) is algebraically subelliptic, then every holomorphic map from \(K\) to \(Y\) can be approximated uniformly on \(K\) by regular maps from \(X\) to \(Y\).
The authors define cascades, which is inspired by M. Gromov’s notion of spray [J. Am. Math. Soc. 2, No. 4, 851–897 (1989; Zbl 0686.32012)], and the proofs follow closely [F. Forstnerič, Am. J. Math. 128, No. 1, 239–270 (2006; Zbl 1171.32303)] for algebraically subelliptic manifolds. The paper contains many nontrivial examples, among them those showing that algebraic homogeneity and algebraic subellipticity are complementary properties: neither implies the other.

MSC:

32Q56 Oka principle and Oka manifolds
41A20 Approximation by rational functions
14E05 Rational and birational maps
14M17 Homogeneous spaces and generalizations

References:

[1] Arzhantsev, I.; Flenner, H.; Kaliman, S.; Kutzschebauch, F.; Zaidenberg, M., Flexible varieties and automorphism groups, Duke Math. J., 162, 4, 767-823 (2013) · Zbl 1295.14057 · doi:10.1215/00127094-2080132
[2] Atiyah, M. F.; Hirzebruch, F., Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., III, 7-38 (1961), American Mathematical Society · Zbl 0108.17705 · doi:10.1090/pspum/003/0139181
[3] Benoist, Olivier; Wittenberg, Olivier, The tight approximation property, J. Reine Angew. Math., 776, 151-200 (2021) · Zbl 1484.14053 · doi:10.1515/crelle-2021-0003
[4] Bochnak, J.; Coste, Michel; Roy, Marie-Françoise, Real algebraic geometry, 36, x+430 p. pp. (1998), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0912.14023 · doi:10.1007/978-3-662-03718-8
[5] Bochnak, J.; Kucharz, W., Realization of homotopy classes by algebraic mappings, J. Reine Angew. Math., 377, 159-169 (1987) · Zbl 0619.14014
[6] Bochnak, J.; Kucharz, W., Approximation of holomorphic maps by algebraic morphisms, Ann. Polon. Math., 80, 85-92 (2003) · Zbl 1028.32007 · doi:10.4064/ap80-0-5
[7] Bredon, Glen E., Topology and geometry, 139, xiv+557 p. pp. (1993), Springer-Verlag: Springer-Verlag, New York · Zbl 0791.55001 · doi:10.1007/978-1-4757-6848-0
[8] Bröcker, Theodor; Jänich, Klaus, Introduction to differential topology, vii+160 p. pp. (1982), Cambridge University Press: Cambridge University Press, Cambridge-New York · Zbl 0486.57001
[9] Chevalley, C., On algebraic group varieties, J. Math. Soc. Japan, 6, 303-324 (1954) · Zbl 0057.26301 · doi:10.2969/jmsj/00630303
[10] Demailly, Jean-Pierre; Lempert, László; Shiffman, Bernard, Algebraic approximations of holomorphic maps from Stein domains to projective manifolds, Duke Math. J., 76, 2, 333-363 (1994) · Zbl 0861.32006 · doi:10.1215/S0012-7094-94-07612-6
[11] Fornæss, John Erik; Forstnerič, Franc; Wold, Erlend F., Advancements in complex analysis – from theory to practice, Holomorphic approximation: the legacy of Weierstrass, Runge, Oka-Weil, and Mergelyan, 133-192 (2020), Springer: Springer, Cham · Zbl 1483.32020 · doi:10.1007/978-3-030-40120-7_5
[12] Forstnerič, Franc, Holomorphic flexibility properties of complex manifolds, Amer. J. Math., 128, 1, 239-270 (2006) · Zbl 1171.32303 · doi:10.1353/ajm.2006.0005
[13] Forstnerič, Franc, Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis, 56, xiv+562 p. pp. (2017), Springer: Springer, Cham · Zbl 1382.32001 · doi:10.1007/978-3-319-61058-0
[14] Forstnerič, Franc, Developments in Oka theory since 2017 (2020)
[15] Fulton, William, Intersection theory, 2, xi+470 p. pp. (1984), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0541.14005 · doi:10.1007/978-3-662-02421-8
[16] Grauert, Hans, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., 135, 263-273 (1958) · Zbl 0081.07401 · doi:10.1007/BF01351803
[17] Grauert, Hans, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2), 68, 460-472 (1958) · Zbl 0108.07804 · doi:10.2307/1970257
[18] Gromov, M., Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., 2, 4, 851-897 (1989) · Zbl 0686.32012 · doi:10.2307/1990897
[19] Gunning, Robert C.; Rossi, Hugo, Analytic functions of several complex variables, xiv+317 p. pp. (1965), Prentice-Hall, Inc.: Prentice-Hall, Inc., Englewood Cliffs, N.J. · Zbl 0141.08601
[20] Hörmander, Lars, An introduction to complex analysis in several variables, 7, xii+254 p. pp. (1990), North-Holland Publishing Co.: North-Holland Publishing Co., Amsterdam · Zbl 0685.32001
[21] Husemoller, Dale, Fibre bundles, 20, xx+353 p. pp. (1994), Springer-Verlag: Springer-Verlag, New York · doi:10.1007/978-1-4757-2261-1
[22] Kaliman, Shulim; Kutzschebauch, Frank; Truong, Tuyen Trung, On subelliptic manifolds, Israel J. Math., 228, 1, 229-247 (2018) · Zbl 1436.14101 · doi:10.1007/s11856-018-1760-7
[23] Kucharz, W., The Runge approximation problem for holomorphic maps into Grassmannians, Math. Z., 218, 3, 343-348 (1995) · Zbl 0827.32015 · doi:10.1007/BF02571908
[24] Kusakabe, Yuta, An implicit function theorem for sprays and applications to Oka theory, Internat. J. Math., 31, 9, 9 p. pp. (2020) · Zbl 1453.32013 · doi:10.1142/S0129167X20500718
[25] Lárusson, Finnur; Truong, Tuyen Trung, Approximation and interpolation of regular maps from affine varieties to algebraic manifolds, Math. Scand., 125, 2, 199-209 (2019) · Zbl 1435.32032 · doi:10.7146/math.scand.a-114893
[26] Lempert, László, Algebraic approximations in analytic geometry, Invent. Math., 121, 2, 335-353 (1995) · Zbl 0837.32008 · doi:10.1007/BF01884302
[27] Serre, Jean-Pierre, Faisceaux algébriques cohérents, Ann. of Math. (2), 61, 197-278 (1955) · Zbl 0067.16201 · doi:10.2307/1969915
[28] Whitney, Hassler, Differentiable manifolds, Ann. of Math. (2), 37, 3, 645-680 (1936) · Zbl 0015.32001 · doi:10.2307/1968482
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.