×

Sunflower hard disk graphs. (English) Zbl 1527.82003

Summary: The random geometric graph consists of a random point set with links between points with mutual distance below a fixed threshold. Here, we use the same geometric connection rule (“hard disk graph”) but for a deterministic point set, the sunflower spiral. At large distances, the local structure is asymptotically a lattice where for each lattice vector, there is another of length a factor \(\sqrt{5}\) greater, and the angle between these varies log-periodically with distance from the origin. Graph properties including node degrees, stretch factor, clique and chromatic numbers are considered, as well as link formation, connectivity and planarity transitions. Properties depend on a combination of the central region and the perturbed distant lattices, in a rich and varied manner.

MSC:

82B10 Quantum equilibrium statistical mechanics (general)
05C80 Random graphs (graph-theoretic aspects)

References:

[1] Barthélemy, M., Spatial networks. Phys. Rep., 1, 1-101 (2011)
[2] Estrada, E.; Knight, P. A., A First Course in Network Theory (2015), Oxford University Press: Oxford University Press USA · Zbl 1360.90046
[3] Dettmann, C. P.; Georgiou, O., Random geometric graphs with general connection functions. Phys. Rev. E, 3 (2016)
[4] Walters, M., Random geometric graphs. Surv. Combin., 365-402 (2011)
[5] Last, G.; Penrose, M., Lectures on the Poisson Process (2018), Cambridge University Press · Zbl 1392.60004
[6] Penrose, M. D., Connectivity of soft random geometric graphs. Ann. Appl. Probab., 2, 986-1028 (2016) · Zbl 1339.05369
[7] Speidel, L.; Harrington, H. A.; Chapman, S. J.; Porter, M. A., Topological data analysis of continuum percolation with disks. Phys. Rev. E, 1 (2018)
[8] Dettmann, C. P.; Georgiou, O.; Pratt, P., Spatial networks with wireless applications. C. R. Phys., 4, 187-204 (2018)
[9] Estrada, E., Quasirandom geometric networks from low-discrepancy sequences. Phys. Rev. E, 2 (2017)
[10] Vogel, H., A better way to construct the sunflower head. Math. Biosci., 3-4, 179-189 (1979)
[11] Maciá, E., Aperiodic crystals in biology. J. Phys.: Condens. Matter, 12 (2021)
[12] Lawrence, J. D., A Catalog of Special Plane Curves (2013), Courier Corporation
[13] Douady, S.; Couder, Y., Phyllotaxis as a physical self-organized growth process. Phys. Rev. Lett., 2098-2101 (1992)
[14] Price, A.; Long, B., Fibonacci spiral arranged ultrasound phased array for mid-air haptics, 1-4
[15] Trojak, O. J.; Gorsky, S.; Murray, C.; Sgrignuoli, F.; Pinheiro, F. A.; Dal Negro, L.; Sapienza, L., Cavity-enhanced light-matter interaction in vogel-spiral devices as a platform for quantum photonics. Appl. Phys. Lett., 1 (2021)
[16] Gorsky, S.; Zhang, R.; Gok, A.; Wang, R.; Kebede, K.; Lenef, A.; Raukas, M.; Dal Negro, L., Directional light emission enhancement from LED-phosphor converters using dielectric Vogel spiral arrays. APL Photon., 12 (2018)
[17] Barberena, J.; Larrayoz, A. M.; Sánchez, M.; Bernardos, A., State-of-the-art of heliostat field layout algorithms and their comparison. Energy Procedia, 31-38 (2016)
[18] Meng, L.; Zhang, J.; Hou, Y.; Breitkopf, P.; Zhu, J.; Zhang, W., Revisiting the Fibonacci spiral pattern for stiffening rib design. Int. J. Mech. Sci. (2023)
[19] Trevino, J.; Liew, S. F.; Noh, H.; Cao, H.; Dal Negro, L., Geometrical structure, multifractal spectra and localized optical modes of aperiodic vogel spirals. Optics Express, 3, 3015-3033 (2012)
[20] Akiyama, S., Spiral Delone sets and three distance theorem. Nonlinearity, 5, 2533-2540 (2020) · Zbl 1487.37050
[21] Marklof, J., Delone sets generated by square roots. Amer. Math. Monthly, 9, 836-840 (2020) · Zbl 1475.11138
[22] Yamagishi, Y., Spiral Delone sets in relative metric (2020), arXiv preprint arXiv:2012.07282
[23] Yamagishi, Y.; Sushida, T.; Sadoc, J.-F., Area convergence of Voronoi cells on spiral lattices. Nonlinearity, 5, 3163-3183 (2021) · Zbl 1471.52006
[24] Adiceam, F.; Tsokanos, I., Visibility properties of spiral sets. Moscow J. Combinatorics Number Theory, 2, 149-159 (2022) · Zbl 1501.11070
[25] Rockett, A. M.; Szüsz, P., Continued Fractions (1992), World Scientific: World Scientific Singapore · Zbl 0925.11038
[26] Ostrowski, A., Bemerkungen zur theorie der diophantischen approximationen, 77-98 · JFM 48.0185.01
[27] Lekkerkerker, C. G., Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci. Stichting Mathematisch Centrum. Zuivere Wiskunde, ZW 30/51 (1951)
[28] K.L. Clarkson, Building triangulations using \(\epsilon \)
[29] Bose, P.; Smid, M., On plane geometric spanners: A survey and open problems. Comput. Geometry, 7, 818-830 (2013) · Zbl 1270.05032
[30] Xia, G., Improved upper bound on the stretch factor of Delaunay triangulations, 264-273 · Zbl 1283.68381
[31] Huxley, M. N., Integer points, exponential sums and the Riemann zeta function, 109-124
[32] McDiarmid, C., Random channel assignment in the plane. Random Struct. Algorithms, 2, 187-212 (2003) · Zbl 1137.94304
[33] Adiceam, F.; Tsokanos, I., Higher dimensional spiral Delone sets. Funct. Approx. Comment. Math., 1, 21-46 (2022) · Zbl 1508.11074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.