×

Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. (English) Zbl 1527.76093

Summary: Examination has been made to explore the impact of the induced magnetic field of peristaltic flow for an incompressible Williamson fluid in the curved channel. Formulation of problem is constructed in wave frame of reference. HPM (homotopy perturbation method) is utilized for explaining the continuity equation, induction equation and equation of motion after utilizing the approximations of long-wavelength and low-Reynolds number. Explicit analytical expressions for pressure gradient and stream function, magnetic force function, induced magnetic field and current density are developed. The effects of embedded parameters portrayed and discussed by using graphical approach.

MSC:

76Z05 Physiological flows
92C35 Physiological flow
76A10 Viscoelastic fluids
Full Text: DOI

References:

[1] Latham, T. W., Fluid Motion in a Peristaltic Pump (1966), Massachusetts Institute of Technology: Massachusetts Institute of Technology Cambridge, Mass, USA, (M. S. thesis)
[2] Jaffrin, M. Y.; Shapiro, A. H., Peristaltic pumping, Annu. Rev. Fluid Mech., 3, 13-16 (1971)
[3] Srivastasa, L. M.; Srivastava, V. P., Peristaltic transport of blood:Casson model- II, J. Biomech., 17, 821-830 (1984)
[4] Raju, K. K.; Devanathan, R., Peristaltic motion of non-Newtonian Part-I, Rheol. Acta, 11, 170-178 (1972) · Zbl 0246.76002
[5] Siddiqui, A. M.; Provost, A.; Schwarz, W. H., Peristaltic flow of a second order fluid in tubes, J. Non-Newton. Fluid Mech., 53, 257-284 (1994)
[6] Mekheimer, Kh. S.; El Shehawey, E. F.; Alaw, A. M., Peristaltic motion of a particle fluid suspension in a planar channel, Internat. J. Theoret. Phys., 37, 2895-2920 (1998) · Zbl 0974.76601
[7] Ellahi, R.; Bhatti, M. M.; Riaz, A.; Sheikholeslami, M., Effects of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium, J. Porous Media, 7, 143-157 (2014)
[8] Haroun, M. H., Effect of Deborah number and phase difference on peristaltic transport of a third-order fluid in an asymmetric channel, Commun. Nonlinear Sci. Numer. Simul., 8, 1464-1480 (2007) · Zbl 1127.76069
[9] Kothandapani, M.; Srinivas, S., Non-linear peristaltic transport of a Newtonian fluid in an inclined asymmetric channel through a porous medium, Phys. Lett. A, 372, 1265-1276 (2008) · Zbl 1217.76105
[10] Nadeem, S.; Akbar, N. S., Influence of heat transfer on a peristaltic flow of Johnson Segalman fluid in a non uniform tube, Int. Commun. Heat Mass Transfer, 36, 1050-1059 (2009)
[11] Nadeem, S.; Akbar, N. S., Jeffrey fluid model for blood flow through a tapered artery with a stenosis, J. Mech. Med. Biol., 1-16 (2010)
[12] Nadeem, S.; Akbar, N. S.; Naz, T., The numerical and analytical solution of peristaltic flow of a Jeffrey fluid in an inclined tube with partial slip, J. Mech. Med. Biol., 1-36 (2010)
[13] Sato, H.; Kawai, T.; Fujita, T.; Okabe, M., Two dimensional peristaltic flow in curved channels, Trans. Japan Soc. Mech. Eng. B, 66, 679-685 (2000)
[14] Huda, A. B.; Noreen, S., Heat transfer analysis with temperature-dependent viscosity for the peristaltic flow of nano fluid with shape factor over heated tube, Int. J. Hydrogen Energy, 42, 25088-25101 (2017)
[15] Noreen, S.; Nadeem, S., Double-diffusive natural convective peristaltic Prandtl flow in a porous channel saturated with a nanofluid, Heat Transfer Res., 48, 283-290 (2017)
[16] Noreen, S.; Khan, L. A.; Khan, Z. H., Natural convective flow analysis for nanofluids with Reynold,s model of viscosity, Int. J. Chem. React. Eng., 14, 1101-1111 (2016)
[17] Nadeem, S.; Ijaz, S.; Adil Sadiq, M., Inspiration of induced magnetic field on a blood flow of prandtl nanofluid model with stenosis, Curr. Nanosci., 10, 536-548 (2014)
[18] Noreen, S.; Qasim, M.; Khan, Z. H., MHD pressure driven flow of nanofluid in curved channel, J. Magn. Magn. Mater., 393, 490-497 (2015)
[19] Noreen, S.; Maraj, E. N.; Nadeem, S., Copper nanoparticle analysis for peristaltic flow in a curved channel with heat transfer characteristics, Eur. Phys. J. Plus, 3, 129-149 (2014)
[20] Williamson, R. V., The flow of pseudoplastic materials, Ind. Eng. Chem. Res., 21, 11, 1108-1111 (1929)
[21] Nadeem, S.; Akram, S., Peristaltic flow of a Williamson fluid in an asymmetric channel, Commun. Nonlinear Sci. Numer. Simul., 615, 1705-1716 (2010) · Zbl 1222.76010
[22] Nadeem, S.; Akbar, N. S.; Hayat, T.; Obaidat, S., Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer, Int. Commun. Heat Mass Transfer, 55, 1855-1862 (2012)
[23] Ellahi, R., The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions, Appl. Math. Model., 37, 1451-1457 (2013) · Zbl 1351.76306
[24] Nadeem, S.; Ijaz, S., Theoretical examination of nanoparticles as a drug carrier with slip effects on the wall of stenosed arteries, Int. J. Heat Mass Transfer, 9, 2217-2227 (2016)
[25] Zehra, I.; Yousaf, M. M.; Nadeem, S., Numerical solutions of Williamson fluid with pressure dependent viscosity, Results Phys., 5, 20-25 (2015)
[26] Salahuddin, T.; Malik, M. Y.; Hussain, A.; Bilal, S.; Awais, M., MHD flowofCattanneo-Christovheat flux model for Williamson fluid over a stretching sheet with variable thickness: Usingnumerical approach, J. Magn. Magn. Mater., 401, 991-997 (2016)
[27] Bibi, M.; Malik, M. Y.; Zeeshan, A., Numerical analysis of unsteady magneto-biphase Williamson fluid flow with time dependent magnetic field, Commun. Theor. Phys., 71, 143-151 (2019)
[28] Nadeem, S.; Noreen, S.; Malik, M. Y., Numerical solutions of peristaltic flow of a Newtonian fluid under the effects of magnetic field and heat transfer in a porous concentric tubes, Z. Naturforsch., 65, 369-380 (2010)
[29] Robert, P. H., An Introduction to Magneto Hydrodynamics (1967), The Whitefriars Press Limited: The Whitefriars Press Limited London
[30] Nadeem, S.; Ijaz, S., Impulsion of nanoparticles as a drug carrier for the theoretical investigation of stenosed arteries with induced magnetic effects, J. Magn. Magn. Mater., 410, 230-241 (2016)
[31] Ellahi, R.; Bhatti, M. M.; Khalique, C. M., Three-dimensional flow analysis of Carreau fluid model induced by peristaltic wave in the presence of magnetic field, J. Molecular Liquids, 241, 1059-1068 (2017)
[32] Hakeem, Abd. El.; Naby, Abd. El.; Misery, A. E. M. El.; Kareem, M. F. Abd. El., Effects of magnetic field on trapping through peristaltic motion for generalized Newtonian fluid in channel, Physica A, 367, 79-92 (2006)
[33] Nadeem, S.; Ijaz, S., Study of radially varying magnetic field on blood flow through catheterized tapered elastic artery with overlapping stenosis, Commun. Theor. Phys., 64, 537-546 (2015) · Zbl 1327.76179
[34] Zeeshan, A.; Ijaz, N.; Abbas, T.; Ellahi, R., The sustainable characteristic of bio-bi-phase flow of peristaltic transport of MHD Jeffrey fluid in the human body, Sustainability, 10, 2671 (2018)
[35] Bhatti, M. M.; Zeeshan, A.; Ellahi, R.; Shit, G. C., Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium, Adv. Powder Technol., 29, 1189-1197 (2018)
[36] Vishnyakov, V. I.; Pavlov, K. B., Peristaltic flow of a conductive fluid in a transverse magnetic field, Transl. Magn. Gidrodin., 8, 174-178 (1972)
[37] Nadeem, S.; Akbar, N. S., Effects of induced magnetic field on the peristaltic flow of Johnson Segalman fluid in a vertical symmetric channel, Appl. Math. Mech., 31, 1-10 (2010) · Zbl 1410.76016
[38] Nadeem, S.; Maraj, E. N., The mathematical analysis for peristaltic flow of hyperbolic tangent fluid in a curved channel, Commun. Theor. Phys., 59, 729-736 (2013)
[39] He, J. H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., 178, 257-262 (1999) · Zbl 0956.70017
[40] He, J. H., Homotopy perturbation method: A new non-linear analytical technique, Appl. Math. Comput., 135, 73-79 (2003) · Zbl 1030.34013
[41] Nadeem, S.; Akram, S., Peristaltic flow of a Williamson fluid in an asymmetric channel, Commun. Nonlinear Sci. Numer. Simul., 615, 1705-1716 (2010) · Zbl 1222.76010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.