×

Reactive control of second Mack mode in a supersonic boundary layer with free-stream velocity/density variations. (English) Zbl 1527.76061

Summary: We consider closed-loop control of a two-dimensional supersonic boundary layer at \(M = 4.5\) that aims at reducing the linear growth of second Mack mode instabilities. These instabilities are first characterized with local spatial and global resolvent analyses, which allow us to refine the control strategy and to select appropriate actuators and sensors. After linear input-output reduced-order models have been identified, multi-criteria structured mixed \(H_2/H_\infty\) synthesis allows us to fix beforehand the controller structure and to minimize appropriate norms of various transfer functions: the \(H_2\) norm to guarantee performance (reduction of perturbation amplification in nominal condition), and the \(H_\infty\) norm to maintain performance robustness (with respect to sensor noise) and stability robustness (with respect to uncertain free-stream velocity/density variations). Both feedforward and feedback set-ups, i.e. with estimation sensor placed respectively upstream/downstream of the actuator, allow us to maintain the local perturbation energy below a given threshold over a significant distance downstream of the actuator, even in the case of noisy estimation sensors or free-stream density variations. However, the feedforward set-up becomes completely ineffective when convective time delays are altered by free-stream velocity variations of \(\pm 5\) %, which highlights the strong relevance of the feedback set-up for performance robustness in convectively unstable flows.

MSC:

76N25 Flow control and optimization for compressible fluids and gas dynamics
76N20 Boundary-layer theory for compressible fluids and gas dynamics
76E05 Parallel shear flows in hydrodynamic stability
76J20 Supersonic flows

Software:

AUSM; MUMPS

References:

[1] Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y. & Koster, J.2001A fully asynchronous multifrontal solver using distributed dynamic scheduling, vol. 23. SIAM. · Zbl 0992.65018
[2] Apkarian, P., Gahinet, P. & Buhr, C.2014 Multi-model, multi-objective tuning of fixed-structure controllers. In 2014 European Control Conference (ECC), pp. 856-861. IEEE.
[3] Apkarian, P. & Noll, D.2006Nonsmooth \(H_{\infty }\) synthesis. IEEE Trans. Autom. Control51, 71-86. · Zbl 1366.93148
[4] Apkarian, P., Noll, D. & Rondepierre, A.2010 Mixed \(H_2/H_{\infty }\) control via nonsmooth optimization. In Proceedings of the IEEE Conference on Decision and Control, vol. 47, pp. 6460-6465. IEEE. · Zbl 1161.93010
[5] Bagheri, S., Brandt, L. & Henningson, D.S.2009Input-output analysis, model reduction and control of the flat-plate boundary layer. J.Fluid Mech.620, 263-298. · Zbl 1156.76374
[6] Barbagallo, A., Dergham, G., Sipp, D., Schmid, P.J. & Robinet, J.-C.2012Closed-loop control of unsteadiness over a rounded backward-facing step. J.Fluid Mech.703, 326-362. · Zbl 1248.76051
[7] Barbagallo, A., Sipp, D. & Schmid, P.J.2009Closed-loop control of an open cavity flow using reduced-order models. J.Fluid Mech.641, 1-50. · Zbl 1183.76701
[8] Belson, B.A., Semeraro, O., Rowley, C.W. & Henningson, D.S.2013Feedback control of instabilities in the two-dimensional Blasius boundary layer: the role of sensors and actuators. Phys. Fluids25, 054106.
[9] Beneddine, S.2017 Characterization of unsteady flow behavior by linear stability analysis. PhD thesis, Université Paris-Saclay.
[10] Beneddine, S., Mettot, C. & Sipp, D.2015Global stability analysis of underexpanded screeching jets. Eur. J. Mech. (B/Fluids)49, 392-399.
[11] Bugeat, B., Chassaing, J.-C., Robinet, J.-C. & Sagaut, P.20193D global optimal forcing and response of the supersonic boundary layer. J.Comput. Phys.398, 108888. · Zbl 1453.76194
[12] Cambier, L., Heib, S. & Plot, S.2013The Onera elsA CFD sofware: input from research and feedback from industry. Mech. Ind.14, 159-174.
[13] Celep, M., Hadjadj, A., Shadloo, M.S., Sharma, S., Yildiz, M. & Kloker, M.J.2022Effect of streak employing control of oblique-breakdown in a supersonic boundary layer with weak wall heating/cooling. Phys. Rev. Fluids7, 053904.
[14] Chen, J., Zhou, K. & Chang, B.-C.1994 Closed-loop controller reduction by a structured truncation approach. In Proceedings of 1994 33rd IEEE Conference on Decision and Control, vol. 3, pp. 2726-2731. IEEE.
[15] Dadfar, R., Fabbiane, N., Bagheri, S. & Henningson, D.S.2014Centralised versus decentralised active control of boundary layer instabilities. Flow, Turbul. Combust.93, 537-553.
[16] Dadfar, R., Semeraro, O., Hanifi, A. & Henningson, D.S.2013Output feedback control of Blasius flow with leading edge using plasma actuator. AIAA J.51, 2192-2207.
[17] Doyle, J.1978Guaranteed margins for LQG regulators. IEEE Trans. Autom. Control23, 756-757.
[18] Doyle, J., Glover, K., Khargonekar, P.P. & Francis, B.A.1989State-space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control34, 831-847. · Zbl 0698.93031
[19] Doyle, J. & Stein, G.1981Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans. Autom. Control26, 4-16. · Zbl 0462.93027
[20] Drmac, Z., Gugercin, S. & Beattie, C.2015Quadrature-based vector fitting for discretized \(H_2\) approximation. SIAM J. Sci. Comput.2, A625-A652. · Zbl 1320.93029
[21] Erdmann, R., Pätzold, A., Engert, M., Peltzer, I. & Nitsche, W.2011On active control of laminar-turbulent transition on two-dimensional wings. Phil. Trans. R. Soc. A369 (1940), 1382-1395.
[22] Fabbiane, N., Bagheri, S., & Henningson, D.S.2017Energy efficiency and performance limitations of linear adaptive control for transition delay. J.Fluid Mech.810, 60-81. · Zbl 1383.76135
[23] Fabbiane, N., Semeraro, O., Bagheri, S. & Henningson, D.S.2014Adaptive and model-based control theory applied to convectively unstable flows. Appl. Mech. Rev.66, 60801.
[24] Fabbiane, N., Simon, B., Fischer, F., Grundmann, S., Bagheri, S. & Henningson, D.S.2015On the role of adaptivity for robust laminar flow control. J.Fluid Mech.767.
[25] Fedorov, A.2011Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech.43, 79-95. · Zbl 1299.76054
[26] Fedorov, A. & Tumin, A.2022The Mack’s amplitude method revisited. Theor. Comput. Fluid Dyn.36, 9-24.
[27] Flinois, T.L.B. & Morgans, A.S.2016Feedback control of unstable flows: a direct modelling approach using the eigensystem realisation algorithm. J.Fluid Mech.793, 41-78. · Zbl 1382.76076
[28] Franklin, G.F., Powell, J.D. & Workman, M.L.1997Digital Control of Dynamic Systems - Third Edition. Prentice Hall.
[29] Freire, G.A., Cavalieri, A.V.G., Silvestre, F.J., Hanifi, A. & Henningson, D.S.2020Actuator and sensor placement for closed-loop control of convective instabilities. Theor. Comput. Fluid Dyn.34, 619-641.
[30] Gad-El Hak, M.2000Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press. · Zbl 0968.76001
[31] Gaponov, S.A. & Smorodsky, B.V.2016Supersonic turbulent boundary layer drag control using spanwise wall oscillation. Intl J. Theor. Appl. Mech.1, 97-103.
[32] Gear, C.W.1971Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall. · Zbl 1145.65316
[33] Glad, T. & Ljung, L.2000Control Theory. Taylor & Francis.
[34] Goddard, P.J. & Glover, K.1995 Performance-preserving controller approximation. PhD thesis, University of Cambridge. · Zbl 0966.93040
[35] Hanifi, A., Schmid, P.J. & Henningson, D.S.1996Transient growth in compressible boundary layer flow. Phys. Fluids8, 826. · Zbl 1025.76536
[36] Hervé, A., Sipp, D., Schmid, P.J. & Samuelides, M.2012A physics-based approach to flow control using system identification. J.Fluid Mech.702, 26-58. · Zbl 1248.76052
[37] Huerre, P. & Monkewitz, P.A.1990Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech.22, 473-537. · Zbl 0734.76021
[38] Jahanbakhshi, R. & Zaki, T.A.2021Optimal heat flux for delaying transition to turbulence in a high-speed boundary layer. J.Fluid Mech.916, A46. · Zbl 1482.76059
[39] Juang, J.-N. & Pappa, R.S.1985An eigensystem realization algorithm for modal parameter identification and model reduction. J.Guid. Control Dyn.8, 620-627. · Zbl 0589.93008
[40] Juillet, F., Schmid, P.J. & Huerre, P.2013Control of amplifier flows using subspace identification techniques. J.Fluid Mech.725, 522-565. · Zbl 1287.76095
[41] Juliano, T.J., Borg, M.P. & Schneider, S.P.2015Quiet tunnel measurements of HIFiRE-5 boundary-layer transition. AIAA J.53, 1980-1993.
[42] Kalman, R.1964When is a linear control system optimal. J.Basic Engng86, 51-60.
[43] Kendall, J.M.1975Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition. AIAA J.13, 290.
[44] Kwakernaak, H.1969Optimal low-sensitivity linear feedback systems. Automatica5, 279-285. · Zbl 0179.14204
[45] Leclercq, C., Demourant, F., Poussot-Vassal, C. & Sipp, D.2019Linear iterative method for closed-loop control of quasiperiodic flows. J.Fluid Mech.868, 22-65. · Zbl 1415.76129
[46] Van Leer, B.1979Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J.Comput. Phys.32, 101-136. · Zbl 1364.65223
[47] Lehoucq, R., Sorensen, D. & Yang, C.1998Arpack users’ guide: solution of large scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM6. · Zbl 0901.65021
[48] Liou, M.-S.2006A sequel to AUSM, Part II: \(Ausm^+\)-up for all speeds. J.Comput. Phys.214, 137-170. · Zbl 1137.76344
[49] Lugrin, M., Nicolas, F., Severac, N., Tobeli, J.-P., Beneddine, S., Garnier, E., Esquieu, S. & Bur, R.2022Transitional shockwave/boundary layer interaction experiments in the R2Ch blowdown wind tunnel. Exp. Fluids63, 46.
[50] Ma, Y. & Zhong, X.2003Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions. J.Fluid Mech.488, 31-78. · Zbl 1063.76544
[51] Mack, L.M.1977 Transition and laminar instability. NASA Tech. Rep. CP 153203.
[52] Mack, L.M.1984 Boundary-layer linear stability theory. AGARD Report No. 709. · Zbl 0542.76086
[53] Malik, M.R.1989Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA J.27, 1487-1493.
[54] Mckelvey, T. & Helmersson, A.1996 State-space parametrizations of multivariable linear systems using tridiagonal matrix forms. In Proceedings of 35th IEEE Conference on Decision and Control, vol. 4, pp. 3654-3659. IEEE.
[55] Morkovin, M.V.1969 On the many faces of transition. In Viscous Drag Reduction (ed. C. Sinclair Wells). Springer US.
[56] Morra, P., Sasaki, K., Hanifi, A., Cavalieri, A.V.G. & Henningson, D.S.2020A realizable data-driven approach to delay bypass transition with control theory. J.Fluid Mech.883, A33. · Zbl 1430.76326
[57] Olazabal-Loume, M., Danvin, F., Mathiaud, J. & Aupoix, B.2017 Study on \(k-\omega\) shear stress transport model corrections applied to rough wall turbulent hypersonic boundary layers. In Seventh European Conference for Aeronautics and Space Sciences. doi:10.13009/EUCASS2017-604.
[58] Orr, W.F.1907The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II. A viscous liquid. Proc. R. Irish Acad. A27, 69-138.
[59] Ramesh, A.V., Utku, S. & Garba, J.A.1989Computational complexities and storage requirements of some Riccati equation solvers. J.Guid. Control Dyn.12, 469-479. · Zbl 0705.93020
[60] Saint-James, J.2020 Prévision de la transition laminaire-turbulent dans le code elsA. Extension de la méthode des paraboles aux parois chauffées. PhD thesis, Institut Supérieur de l’Aéronautique et de l’Espace (ISAE).
[61] Sasaki, K., Morra, P., Cavalieri, A.V.G., Hanifi, A. & Henningson, D.S.2020On the role of actuation for the control of streaky structures in boundary layers. J.Fluid Mech.883, A34. · Zbl 1430.76327
[62] Sasaki, K., Morra, P., Fabbiane, N., Cavalieri, A.V.G., Hanifi, A. & Henningson, D.S.2018aOn the wave-cancelling nature of boundary layer flow control. Theor. Comput. Fluid Dyn.32, 593-616.
[63] Sasaki, K., Tissot, G., Cavalieri, A.V.G., Silvestre, F.J., Jordan, P. & Biau, D.2018bClosed-loop control of a free shear flow: a framework using the parabolized stability equations. Theor. Comput. Fluid Dyn.32, 765-788.
[64] Schmid, P.J.2007Nonmodal stability theory. Annu. Rev. Fluid Mech.39, 129-162. · Zbl 1296.76055
[65] Schmid, P.J. & Sipp, D.2016Linear control of oscillator and amplifier flows. Phys. Rev. Fluids1, 040501.
[66] Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D.S.2011Feedback control of three-dimensional optimal disturbances using reduced-order models. J.Fluid Mech.677, 63-102. · Zbl 1241.76167
[67] Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D.S.2013aTransition delay in a boundary layer flow using active control. J.Fluid Mech.731, 288-311. · Zbl 1294.76093
[68] Semeraro, O., Pralits, J.O., Rowley, C.W. & Henningson, D.S.2013bRiccati-less approach for optimal control and estimation: an application to two-dimensional boundary layers. J.Fluid Mech.731, 394-417. · Zbl 1294.76108
[69] Shaqarin, T., Oswald, P., Noack, B.R. & Semaan, R.2021Drag reduction of a D-shaped bluff-body using linear parameter varying control. Phys. Fluids33, 077108.
[70] Sharma, S., Shadloo, M.S., Hadjadj, A. & Kloker, M.J.2019Control of oblique-type breakdown in a supersonic boundary layer employing streaks. J.Fluid Mech.873, 1072-1089. · Zbl 1419.76413
[71] Sipp, D., Marquet, O., Meliga, P. & Barbagallo, A.2010Dynamics and control of global instabilities in open-flows: a linearized approach. Appl. Mech. Rev.63, 030801.
[72] Sipp, D. & Schmid, P.J.2016Linear closed-loop control of fluid instabilities and noise-induced perturbations: a review of approaches and tools. Appl. Mech. Rev.68, 020801.
[73] Skogestad, S. & Postlethwaite, I.2005Multivariable Feedback Control: Analysis and Design. Wiley & Son. · Zbl 0883.93001
[74] Smith, A.M.O. & Gamberoni, N.1956Transition, Pressure Gradient and Stability Theory. Douglas Aircraft Company.
[75] Stroh, A., Frohnapfel, B., Schlatter, P. & Hasegawa, Y.2015A comparison of opposition control in turbulent boundary layer and turbulent channel flow. Phys. Fluids27 (7), 075101.
[76] Tol, H.J., Kotsonis, M. & De Visser, C.C.2019Pressure output feedback control of Tollmien-Schlichting waves in Falkner-Skan boundary layers. AIAA J.57, 1-14.
[77] Tol, H.J., Kotsonis, M., De Visser, C.C. & Bamieh, B.2017Localised estimation and control of linear instabilities in two-dimensional wall-bounded shear flows. J.Fluid Mech.824, 818-865. · Zbl 1374.76069
[78] Vemuri, S.H.S., Bosworth, R., Morrison, J.F. & Kerrigan, E.C.2018Real-time feedback control of three-dimensional Tollmien-Schlichting waves using a dual-slot actuator geometry. Phys. Rev. Fluids3, 053903.
[79] Yao, J. & Hussain, F.2019Supersonic turbulent boundary layer drag control using spanwise wall oscillation. J.Fluid Mech.880, 388-429. · Zbl 1430.76349
[80] Zhang, Z. & Freudenberg, J.S.1987 Loop transfer recovery with non-minimum phase zeros. In 26th IEEE Conference on Decision and Control, vol. 26, pp. 956-957. IEEE.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.