×

A machine learning-based probabilistic computational framework for uncertainty quantification of actuation of clustered tensegrity structures. (English) Zbl 1527.74079

Summary: Clustered tensegrity structures integrated with continuous cables are lightweight, foldable, and deployable. Thus, they can be used as flexible manipulators or soft robots. The actuation process of such soft structure has high probabilistic sensitivity. It is essential to quantify the uncertainty of actuated responses of the tensegrity structures and to modulate their deformation accurately. In this work, we propose a comprehensive data-driven computational approach to study the uncertainty quantification (UQ) and probability propagation in clustered tensegrity structures, and we have developed a surrogate optimization model to control the flexible structure deformation. An example of clustered tensegrity beam subjected to a clustered actuation is presented to demonstrate the validity of the approach and its potential application. The three main novelties of the data-driven framework are: (1) The proposed model can avoid the difficulty of convergence in nonlinear Finite Element Analysis (FEA), by two machine learning methods, the Gauss Process Regression (GPR) and Neutral Network (NN). (2) A fast real-time prediction on uncertainty propagation can be achieved by the surrogate model, and (3) Optimization of the actuated deformation comes true by using both Sequence Quadratic Programming (SQP) and Bayesian optimization methods. The results have shown that the proposed data-driven computational approach is powerful and can be extended to other UQ models or alternative optimization objectives.

MSC:

74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
74S99 Numerical and other methods in solid mechanics
74P10 Optimization of other properties in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI

References:

[1] Rhode-Barbarigos, L.; Bel Hadj Ali, N.; Motro, R.; Smith, I., Design aspects of a deployable tensegrity-hollow-rope footbridge, Int J Space Struct., 27, 81-96 (2012) · doi:10.1260/0266-3511.27.2-3.81
[2] G. Tibert, Deployable tensegrity structures for space applications, (Ph.D. thesis), Cambridge, Royal Institute of Technology, (2002).
[3] Wang, N.; Naruse, K.; Stamenovic, D.; Fredberg, JJ; Mijailovich, SM; Toric-Norrelykke, IM; Polte, T.; Mannix, R.; Ingber, DE, Mechanical behavior in living cells consistent with the tensegrity model, Proc Natl Acad Sci U S A, 98, 7765-7770 (2001) · doi:10.1073/pnas.141199598
[4] Xu, G-K; Li, B.; Feng, X-Q; Gao, H., A tensegrity model of cell reorientation on cyclically stretched substrates, Biophys J, 111, 1478-1486 (2016) · doi:10.1016/j.bpj.2016.08.036
[5] Fraternali, F.; Carpentieri, G.; Amendola, A., On the mechanical modeling of the extreme softening/stiffening response of axially loaded tensegrity prisms, J Mech Phys Solids, 74, 136-157 (2015) · Zbl 1349.74056 · doi:10.1016/j.jmps.2014.10.010
[6] Luo, A.; Liu, H., Analysis for feasibility of the method for bars driving the ball tensegrity robot, J Mech Robot, 9, 051010 (2017) · doi:10.1115/1.4037565
[7] Kim, K.; Agogino, AK; Agogino, AM, Rolling locomotion of cable-driven soft spherical tensegrity robots, Soft Robot, 7, 346-361 (2020) · doi:10.1089/soro.2019.0056
[8] Surovik, D.; Wang, K.; Vespignani, M.; Bruce, J.; Bekris, KE, Adaptive tensegrity locomotion: Controlling a compliant icosahedron with symmetry-reduced reinforcement learning, Int J Robot Res, 40, 375-396 (2021) · doi:10.1177/0278364919859443
[9] J. Kimber, Z. Ji, A. Petridou, T. Sipple, K. Barhydt, J. Boggs, L. Dosiek, J. Rieffel, Low-cost wireless modular soft tensegrity robots, In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 2019, pp. 88-93.
[10] Rieffel, J.; Mouret, J-B, Adaptive and resilient soft tensegrity robots, Soft Robot, 5, 318-329 (2018) · doi:10.1089/soro.2017.0066
[11] Moored, KW; Bart-Smith, H., The analysis of tensegrity structures for the design of a morphing wing, J Appl Mech-Trans Asme, 74, 668-676 (2007) · doi:10.1115/1.2424718
[12] Moored, KW; Bart-Smith, H., Investigation of clustered actuation in tensegrity structures, Int J Solids Struct, 46, 3272-3281 (2009) · Zbl 1167.74499 · doi:10.1016/j.ijsolstr.2009.04.026
[13] Ali, NBH; Smith, IFC, Dynamic behavior and vibration control of a tensegrity structure, Int J Solids Struct, 47, 1285-1296 (2010) · Zbl 1193.74051 · doi:10.1016/j.ijsolstr.2010.01.012
[14] Ali, NBH; Rhode-Barbarigos, L.; Smith, IFC, Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm, Int J Solids Struct, 48, 637-647 (2011) · Zbl 1236.74191 · doi:10.1016/j.ijsolstr.2010.10.029
[15] Tran, HC; Lee, J., Geometric and material nonlinear analysis of tensegrity structures, Acta Mech Sin, 27, 938-949 (2011) · Zbl 1293.74304 · doi:10.1007/s10409-011-0520-2
[16] Zhang, L.; Gao, Q.; Liu, Y.; Zhang, HW, An efficient finite element formulation for nonlinear analysis of clustered tensegrity, Eng Comput, 33, 1, 252-273 (2016) · doi:10.1108/EC-08-2014-0168
[17] Kan, Z.; Peng, H.; Chen, B.; Zhong, W., Nonlinear dynamic and deployment analysis of clustered tensegrity structures using a positional formulation FEM, Compos Struct, 187, 241-258 (2018) · doi:10.1016/j.compstruct.2017.12.050
[18] Kirchdoerfer, AT; Ortiz, M., Data-driven computational mechanics, Comput Methods Appl Mech Eng, 304, 81-101 (2016) · Zbl 1425.74503 · doi:10.1016/j.cma.2016.02.001
[19] Oishi, A.; Yagawa, G., Computational mechanics enhanced by deep learning, Comput Methods Appl Mech Eng, 327, 327-351 (2017) · Zbl 1439.74458 · doi:10.1016/j.cma.2017.08.040
[20] Prudencio, EE; Bauman, PT; Faghihi, D.; Ravi-Chandar, K.; Oden, JT, A computational framework for dynamic data-driven material damage control, based on Bayesian inference and model selection, Int J Numer Methods Eng, 102, 379-403 (2015) · Zbl 1352.74275 · doi:10.1002/nme.4669
[21] Lima, EABF; Oden, JT; Wohlmuth, B.; Shahmoradi, A.; Hormuth, DA II; Yankeelov, TE; Scarabosio, L.; Horger, T., Selection and validation of predictive models of radiation effects on tumor growth based on noninvasive imaging data, Comput Methods Appl Mech Eng, 327, 277-305 (2017) · Zbl 1439.92110 · doi:10.1016/j.cma.2017.08.009
[22] Jha, PK; Cao, L.; Oden, JT, Bayesian-based predictions of COVID-19 evolution in Texas using multispecies mixture-theoretic continuum models, Comput Mech, 66, 1055-1068 (2020) · Zbl 1469.92111 · doi:10.1007/s00466-020-01889-z
[23] Bessa, MA; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, DW; Brinson, C.; Chen, W.; Liu, WK, A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality, Comput Methods Appl Mech Eng, 320, 633-667 (2017) · Zbl 1439.74014 · doi:10.1016/j.cma.2017.03.037
[24] Bessa, MA; Pellegrino, S., Design of ultra-thin shell structures in the stochastic post-buckling range using Bayesian machine learning and optimization, Int J Solids Struct, 139, 174-188 (2018) · doi:10.1016/j.ijsolstr.2018.01.035
[25] Bessa, MA; Glowacki, P.; Houlder, M., Bayesian machine learning in metamaterial design: fragile becomes supercompressible, Adv Mater, 31, 48, 1904845 (2019) · doi:10.1002/adma.201904845
[26] Li, X.; Ning, S.; Liu, Z.; Yan, Z.; Luo, C.; Zhuang, Z., Designing phononic crystal with anticipated band gap through a deep learning-based data-driven method, Comput Methods Appl Mech Eng, 361, 112737 (2020) · Zbl 1442.74135 · doi:10.1016/j.cma.2019.112737
[27] Qiu, Z.; Ma, L.; Wang, X., Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty, J Sound Vib, 319, 531-540 (2009) · doi:10.1016/j.jsv.2008.06.006
[28] Wang, C.; Qiu, Z., Hybrid uncertain analysis for steady-state heat conduction with random and interval parameters, Int J Heat Mass Transf, 80, 319-328 (2015) · doi:10.1016/j.ijheatmasstransfer.2014.09.033
[29] Luo, Y.; Xing, J.; Kang, Z.; Zhan, J.; Li, M., Uncertainty of membrane wrinkling behaviors considering initial thickness imperfections, Int J Solids Struct, 191, 264-277 (2020) · doi:10.1016/j.ijsolstr.2020.01.022
[30] Simpson, TW; Lin, D., Sampling strategies for computer experiments: design and analysis, Int J Reliab Appl, 2, 209-240 (2001)
[31] Mckay, MD; Beckmanw, RJ; Conover, J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics., 21, 239-245 (1979) · Zbl 0415.62011
[32] Sobol, IM, The distribution of points in a cube and the approximate evaluation of integrals, USSR Comput Math Math Phys, 7, 784-802 (1969)
[33] Rasmussen, CE; Williams, CKI, Gaussian processes for machine learning (2005), The MIT Press · Zbl 1177.68165 · doi:10.7551/mitpress/3206.001.0001
[34] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 436-444 (2015) · doi:10.1038/nature14539
[35] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), The MIT Press · Zbl 1373.68009
[36] D. Kingma, J. Ba, Adam: A method for stochastic optimization, (2014). http://arxiv.org/abs/1412.6980.
[37] Byrd, RH; Lu, P.; Nocedal, J.; Zhu, C., A limited memory algorithm for bound constrained optimization, Siam J Sci Comput, 16, 1190-1208 (1995) · Zbl 0836.65080 · doi:10.1137/0916069
[38] Fletcher, R., Practical methods of optimization: constrained optimization (1981), Wiley · Zbl 0474.65043
[39] Hock, W.; Schittkowski, K., A comparative performance evaluation of 27 nonlinear programming codes, Computing, 30, 335-358 (1983) · Zbl 0497.90057 · doi:10.1007/BF02242139
[40] Zitzler, E.; Thiele, L., Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans Evol Comput, 3, 257-271 (1999) · doi:10.1109/4235.797969
[41] J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning algorithms, in: Procceeding 25th International Conference Neural Information Processing Systems - Vol. 2, Curran Associates Inc., Red Hook, NY, USA, 2012: pp. 2951-2959.
[42] J.T. Wilson, F. Hutter, M.P. Deisenroth, Maximizing acquisition functions for Bayesian optimization, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. CesaBianchi, R. Garnett (Eds.), Adv. Neural Inf. Process. Syst. 31 Nips 2018, Neural Information Processing Systems (nips), La Jolla, 2018.
[43] B. Peng, F. Yang, C. Yan, X. Zeng, D. Zhou, Efficient multiple starting point optimization for automated analog circuit optimization via recycling simulation data, in: Proceeding 2016 Des. Autom. Test European Conference Exhibition Date, IEEE, New York, 2016, pp. 1417-1422.
[44] Saltelli, A., Making best use of model evaluations to compute sensitivity indices, Comput Phys Commun, 145, 280-297 (2002) · Zbl 0998.65065 · doi:10.1016/S0010-4655(02)00280-1
[45] Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S., Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput Phys Commun, 181, 259-270 (2010) · Zbl 1219.93116 · doi:10.1016/j.cpc.2009.09.018
[46] Sobol, IM, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math Comput Simul, 55, 271-280 (2001) · Zbl 1005.65004 · doi:10.1016/S0378-4754(00)00270-6
[47] Herman, J.; Usher, W., SALib: an open-source python library for sensitivity analysis, J Open Source Softw, 2, 97 (2017) · doi:10.21105/joss.00097
[48] R. Campello, D. Moulavi, J. Sander, Density-based clustering based on hierarchical density estimates, In: 2013, pp. 160-172.
[49] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A Density-based algorithm for discovering clusters in large spatial databases with noise, In: 1996, pp. 226-231.
[50] Hartigan, JA; Wong, MA, Algorithm AS 136: a k-means clustering algorithm, J R Stat Soc Ser C Appl Stat, 28, 100-108 (1979) · Zbl 0447.62062
[51] R.J.G.B. Campello, D. Moulavi, J. Sander, Density-based clustering based on hierarchical density estimates, in: Adv. Knowl. Discov. Data Min., Springer, Berlin, Heidelberg, 2013, pp. 160-172.
[52] McInnes, L.; Healy, J.; Astels, S., hdbscan: Hierarchical density-based clustering, J Open Source Softw, 2, 205 (2017) · doi:10.21105/joss.00205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.