×

Oseledets splitting and invariant manifolds on fields of Banach spaces. (English) Zbl 1527.37053

J. Dyn. Differ. Equations 35, No. 1, 103-133 (2023); correction ibid. 35, No. 1, 983 (2023).
Summary: We prove a semi-invertible Oseledets theorem for cocycles acting on measurable fields of Banach spaces, i.e. we only assume invertibility of the base, not of the operator. As an application, we prove an invariant manifold theorem for nonlinear cocycles acting on measurable fields of Banach spaces.

MSC:

37H15 Random dynamical systems aspects of multiplicative ergodic theory, Lyapunov exponents
37D10 Invariant manifold theory for dynamical systems

References:

[1] Arnold, L., Random Dynamical Systems (1998), Berlin: Springer, Berlin · Zbl 0906.34001 · doi:10.1007/978-3-662-12878-7
[2] Blumenthal, A., A volume-based approach to the multiplicative ergodic theorem on Banach spaces, Discrete Contin. Dyn. Syst., 36, 5, 2377-2403 (2016) · Zbl 1342.37058 · doi:10.3934/dcds.2016.36.2377
[3] Caraballo, T.; Garrido-Atienza, MJ; Schmalfuss, B., Existence of exponentially attracting stationary solutions for delay evolution equations, Discrete Contin. Dyn. Syst., 18, 2-3, 271-293 (2007) · Zbl 1125.60058
[4] Caraballo, T.; Kloeden, PE; Schmalfuß, B., Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Optim., 50, 3, 183-207 (2004) · Zbl 1066.60058 · doi:10.1007/s00245-004-0802-1
[5] Conti, M.; Pata, V.; Temam, R., Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differ. Equ., 255, 6, 1254-1277 (2013) · Zbl 1288.35098 · doi:10.1016/j.jde.2013.05.013
[6] Doan, T.S.: Lyapunov Exponents for Random Dynamical Systems. Ph.D. thesis, Technische Universität Dresden (2009)
[7] Di Plinio, F.; Duane, GS; Temam, R., Time-dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29, 1, 141-167 (2011) · Zbl 1223.37100 · doi:10.3934/dcds.2011.29.141
[8] Friz, PK; Hairer, M., A Course on Rough Paths with an Introduction to Regularity Structures. Universitext (2014), Berlin: Springer, Berlin · Zbl 1327.60013 · doi:10.1007/978-3-319-08332-2
[9] Flandoli, F.; Schmalfuss, B., Random attractors for the \(3\) D stochastic Navier-Stokes equation with multiplicative white noise, Stoch. Stoch. Rep., 59, 1-2, 21-45 (1996) · Zbl 0870.60057 · doi:10.1080/17442509608834083
[10] González-Tokman, C.; Quas, A., A semi-invertible operator Oseledets theorem, Ergodic Theory Dyn. Syst., 34, 4, 1230-1272 (2014) · Zbl 1317.37006 · doi:10.1017/etds.2012.189
[11] González-Tokman, C.; Quas, A., A concise proof of the multiplicative ergodic theorem on Banach spaces, J. Mod. Dyn., 9, 237-255 (2015) · Zbl 1358.37020 · doi:10.3934/jmd.2015.9.237
[12] Varzaneh, M.G., Riedel, S., Scheutzow, M.: A dynamical theory for singular stochastic delay differential equations I: linear equations and a multiplicative ergodic theorem on fields of Banach spaces. arXiv:1903.01172v3 (2019) · Zbl 1490.34103
[13] Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). (Reprint of the 1980 edition) · Zbl 0836.47009
[14] Lions, J.-L.: Équations différentielles opérationnelles et problèmes aux limites. Die Grundlehren der mathematischen Wissenschaften, Bd. 111. Springer, Berlin (1961)
[15] Lian, Z., Lu, K.: Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space. Mem. Am. Math. Soc. 206(967), vi+106 (2010) · Zbl 1200.37047
[16] Lyons, R.; Pemantle, R.; Peres, Y., Conceptual proofs of \(L\log L\) criteria for mean behavior of branching processes, Ann. Probab., 23, 3, 1125-1138 (1995) · Zbl 0840.60077 · doi:10.1214/aop/1176988176
[17] Mañé, R.: Lyapounov exponents and stable manifolds for compact transformations. In Geometric Dynamics (Rio de Janeiro, 1981), volume 1007 of Lecture Notes in Mathematics, pp. 522-577. Springer, Berlin (1983) · Zbl 0522.58030
[18] Oseledec, VI, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Mosk. Mat. Obšč., 19, 179-210 (1968) · Zbl 0236.93034
[19] Raghunathan, MS, A proof of Oseledec’s multiplicative ergodic theorem, Isr. J. Math., 32, 4, 356-362 (1979) · Zbl 0415.28013 · doi:10.1007/BF02760464
[20] Ruelle, D., Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math., 50, 27-58 (1979) · Zbl 0426.58014 · doi:10.1007/BF02684768
[21] Ruelle, D., Characteristic exponents and invariant manifolds in Hilbert space, Ann. Math. (2), 115, 2, 243-290 (1982) · Zbl 0493.58015 · doi:10.2307/1971392
[22] Thieullen, P., Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4, 1, 49-97 (1987) · Zbl 0622.58025 · doi:10.1016/s0294-1449(16)30373-0
[23] Walters, P., A dynamical proof of the multiplicative ergodic theorem, Trans. Am. Math. Soc., 335, 1, 245-257 (1993) · Zbl 0765.28014 · doi:10.1090/S0002-9947-1993-1073779-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.